# Saudi Journal of Pathology and Microbiology

Abbreviated Key Title: Saudi J Pathol Microbiol ISSN 2518-3362 (Print) | ISSN 2518-3370 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sjpm

## **Original Research Article**

# Comparative Evaluation of the Antimicrobial Activities of some plants used in Natural Medicine – Spondias mombin, Calliaidra portoricensiss, Dennettia tripetala, Anthocleista djalonensis and Cronton zambesicus

Oguegbulu N. E\*, Abo A. K, Afieroho O. E

Department of Pharmacognosy and Phytotherapy, Faculty of Pharmaceutical Sciences, University of Port Harcourt, Rivers State, Nigeria

**DOI:** 10.36348/sjpm.2020.v05i05.006 | **Received:** 28.02.2020 | **Accepted:** 06.03.2020 | **Published:** 14.05.2020

\*Corresponding author: Oguegbulu N. E

# **Abstract**

The bioactive constituents of five Nigerian plants in use in Traditional medicine namely, *Spindias mombin* (family: *Anacardinaceae*), *Calliandra portoricensis* (family: *Fabaceae*), *Dennettia tripetala* (family: *Annonaceae*), *Anthocleista djalonensis* (family: *Loganiaceae*) and *Croton zambasicus* (family: *Euphoirbiaceae*), were investigated for antimicrobial activities. The morphological parts of the plants evaluated were the leaf and root. The dried and pulverized samples were subjected to successive extraction using organic solvents; n-hexane, ethylacetate and 70% aqueous methanol. The respective extracts were concentrated *en vacuo* using a rotatory evaporator at less than 40° C. Seven human pathologically viable and clinical strains of microganisms comprising the G+ve, G-ve, fungi and nocosomial strains were used as test organisms, ciprofloxacin and fluconazole solutions served as the control reference standards. Agar well diffusion assay method was used and the Inhibition Zones of growth were measured to assess activities for all the extracts. The Minimum Inhibitory Concenyrations (MIC) and Total Activity (TA) were also determined. *C. zambasicus* exhibited a broad antibacterial activity whereas *C. portoricensis* showed the best spectrum of both antibacterial and antifungal activities. The extract of *D. tripetala* ranked lowest in activity of all the test samples. Ethyl acetate extracts ranked the highest of all the three organic solvents used for the study.

**Keywords:** Nigerian plants, extracts in different solvents, susceptibility antimicrobial testing with human pathogenic microorganisms.

Copyright @ 2020: This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and sources are credited.

# Introduction

A greater proportion of natural products used medicinally are derived from plants. Admittedly, the poisonous and medicinal properties of plants were discovered by man while in search of food. It has been estimated by the World Health Organization (WHO) that about 80 % of the world's inhabitants rely mainly on traditional medicine for their primary health care [1]. In recognition of this, Alma Ata declaration provided for the accommodation of proven traditional medicines in National Drug Policies and Regulatory Measures [2]. Prescription data analysis also indicated that, "About 25% contained plant extracts or active components derived from high plants. At least 119 chemical substances derived from 90 plants species can be considered as important drugs commercially in use in one or more countries" [3]. Natural medicine has been embraced largely because of perceptions of it having no adverse effects, availability, affordability and the fact that many ailments have defied the orthodox medicine: Additionally, the world market for herbal medicines

including herbal products and raw materials has been estimated to reach \$43 billion with an annual growth rate of between 5 and 15% [4].

The terms antimicrobial and antibiotic have been applied interchangeably. Antibiotics being natural substances that inhibit the growth of bacteria or kill them directly, however in practice, most commercial antibiotics have been chemically altered or enhanced producing antimicrobials [5].

Deriving from the above, there is then a justification for investigation of various plants from biodiversity as potential and veritable sources of antimicrobial agents. While exploring these, the concentrations of the prospective medicinal antimicrobial candidates must be small and causes little or no host damage [6].

The antibiotics of popular usage are; beta lactam group such as the peniallins and the Cephalosphorins; the non-lactam ones include tetracyclines, erythromycins, aminoglycosides such as gentamycin and kanamycins; the macrolides, polyenes,

chloramphenicol, fucidic acid, norobicin and the relatively new group – the fluorinated-4-quinolone methanol such as the ciprofloxacin with its broad based activity spectrum [7].

Table-1: Summary of the selected plants for the invagination

| S/N | Plant Species       | Family        | Medicinal uses               | Distribution          | References |
|-----|---------------------|---------------|------------------------------|-----------------------|------------|
| 1.  | Spondias mombin     | Anacordiacea  | Antibacterial (Gonorrhea)    | West Africa including | [8]        |
|     |                     |               | inflammation                 | Nigeria               |            |
| 2.  | Dennettia tripetala | Annonaceae    | Antibacterial                | Tropics Nigeria       | [9]        |
|     |                     |               | hypolipidemic                |                       |            |
| 3.  | Calliandra          | Fabaceae      | Antimicrobial, tonsillitis,  | Central America,-     | [10]       |
|     | portoricensis       |               | ulcer                        | Mexico, Panama, West  |            |
|     |                     |               |                              | Africa                |            |
| 4.  | Anthocleista        | Loganiaceae   | Microbial infections., Anti- | Tropics such as West  | [11]       |
|     | djaalonensis        |               | inflammatory                 | Africa                |            |
|     |                     |               |                              |                       |            |
| 5.  | Croton zambasicus   | Euphorbiaceae | Antimicrobial                | Tropics, West Africa, | [12]       |
|     |                     |               |                              | Nigeria               |            |

#### **Available Extraction Methods Include**

Repeated maceration with agitation, percolation or by continuous extraction such as with soxhlet extractor. Prior to these, the extraction process involves rupture of cells in order to remove contents and optimize surface area of material with extraction solvent which increases the amount of leaching cells. These end can be achieved by grinding tissues to the smallest particles possible [13].

Plant extracts usually used in antimicrobial bioassay are prepared by maceration or percolation of fresh green plants or dried powdered plant material with water or organic solvents. Fractions of the total extracts are carried out prior to the testing in order to separate polar from non-polar compounds acid and neutral from basic substances [14]. Further, the listrd conditions must also be fulfilled;

- 1. The plant products must be brought into contact with the microorganisms that have been selected for the test.
- 2. Conditions must be adjusted such that microorganisms are able to grow when no antimicrobial agents are present.
- 3. There must be some means of judging the amount of growth, if any is made by the test organisms during the period of time chosen for the test.

Conforming to the above three criteria therefore are the difusion, dilution and bio-autographic methods whereas the method requiring sterile samples may not be suitable [15].

The selection of the test microorganisms should be as diverse as possible and preferably, representatives of all important groups of pathogenic microorganisms, especially when the investigation is of general character [16]. The same report further

highlighted that many crude extracts exhibited aspecific inhibitory activity against *staphylococcus aureus* due to a synergistic effect of several plant components.

#### THE AIM OF THIS RESEARCH

- To evaluate the antimicrobial activities of crude extracts from five different plants used in Nigerian natural medicine and
- To identify the most promising of all five plants for isolation and characterization of the antibacterial and antifungal compounds of the same plant.

## MATERIALS AND METHODS

#### **MATERIALS**

Anthocleista djalonensis, Dennittia tripetalaand, Calliandra portoricensis were harvested from Osisioma Ngwa Local Government Area of Abia State Nigeria whereas Spondias mombin and Croton zambasicus were collected from the University of Port Harcourt community in Obiakpo Local Government Area of Rivers State, Nigeria. They were all authenticated at the Herbarium of the Department of Plant Science and Biotechnology of University of Port Harcourt, Nigeria.

#### **METHODS**

# **Preparation of Crude Plant extracts:**

100 g each of the dried and pulverized plant samples were macerated and subjected to successive extraction for 24 x 2 hours using organic solvents of varying polarities,: n-hexane,, ethyl acetate and methanol. The extracts were filtered and the air-dried husks were re-packed for successive maceration with the next solvent. The filtrate was concentrated *en vacuo* using a rotary evaporator at temperature not exceeding 45°C. The yield was noted and the residue-sample labeled accordingly for the bio-assays. The above

procedure was repeated for the rest of the solvents for all the plant samples obtaining samples; Sm-L; Dt-L; Cp-R; Cz-L and Ad-R.

#### **Test Micro-Organisms**

Test microorganisms were selected to reflect a fairly wide spread of human pathogenically viable and clinical isolates, some of which are also nocosomial strains. The microorganisms used were; *Staphylococcus aureus* (gram +ve cocci), *Streptococcus fecalis*(gram +ve cocci), *Klebsiella pneumoneae* (gram -ve rod) Aspergillus niger (fungus).

The clinical isolates were from the Department of Microbiology of University of Port Harcourt Teaching Hospital and authenticated by Dr. Martins Oluleye of same Department.

# **Preparation of Test Microorganisms**

For bacterial suspension, a loopful of isolated microbial colony from the slant was sub-cultured into 10ml of peptone water. This was incubated at  $37^{\circ}\text{C}$  for 18 h prior to the susceptibility testing. Then 0.5ml of the actively growing test bacterial suspension was again sub-cultured into 9.50ml of peptone water, the turbidity of which was matched with that of standard of 0.5 McFarland units [17]  $(1.5\text{x}10^8)$  c.f.u. per ml.

For preparation of fungi, the isolated fungal test organisms were maintained on Sabouraud Dextrose Agar (SDA) at room temperature (25°C) for 72 h and thereafter sub-cultured as for bacteria for the test.

# Invitro Susceptibility testing of the plant extracts against the selected microorganisms

The cup-plate agar diffusion method [18] was adopted in this research for the susceptibility testing of the prepared extracts and the standard reference samples.

All the glass wares and petri dishes were sterilized using the autoclave at 21°C under pressure of

15 pounds per square inch (psi) and for 20 minutes. Following standard microbiological procedure [19]. 1 ml of the stock sub-culture suspension  $1.50 \times 10^8 \mathrm{cfu}$  / ml [20] was carefully seeded into Muller Hinton molten nutrient agar in aliquot of 20ml each. This was distributed into sterile petri-dishes and allowed to solidify.

AT each of the quadrants of the petri-dish containing nutrient agar, a cup is made with an 8mm gauge sterile cork-borer. Opposite cups were filled with 0.2ml of (40 and 20)mg/ml respectively of 10% aqueous Dimethyl sulphoxide (DMSO) solutions of each of the crude extracts (Sm-L, Dt-L, Cp-R, Cz-L, Ad-R). Micro-pipettes were used to deliver the test samples. The remaining two cups were loaded with 0.2ml of ciprofloxacillin solution of 4 microgram per ml (bacteria) and 0.2ml Flucmazole solution of 200 microgram per ml (fungi). The plain 10% aq. DMSO, Ciprofloxacin solution and fluconazole solution were used as controls.

The petri-dishes in triplicate containing test microorganisms, crude plant extracts and the controls were allowed to stand for 1h at room temperature for diffusion before loading in the incubator in upright position. This is incubated at 37°C for 18 h (bacteria) and at room temperature (25°C) for 72 h (Fungi).

At the end of the susceptibility testing period, the diameters of the growth inhibition zones were measured.

# $\begin{array}{lll} \textbf{Determination} & \textbf{of} & \textbf{Minimum} & \textbf{Inhibitory} & \textbf{Concentration} \\ \textbf{(MIC)} & & & & \\ \end{array}$

This was determined by a modification of standard agar- well diffusion method [22, 23]. The active crude plant samples were dissolved in 10 % aqueous DMSO by serial two-fold dilution to concentrations of; (40,20,10 and 5) mg/ ml. These were loaded in the nutrient agar wells as described in above

# **RESULTS AND DISCUSSION**

Table-2: The percentage yield of the plant extracts in different solvents

| S/N | Plant Species | n-hexane | Ethyl acetate | Methanol |
|-----|---------------|----------|---------------|----------|
| 1.  | Sm-L          | 1.41     | 1.86          | 1.45     |
| 2   | Cz-L          | 2.06     | 1.96          | 2.28     |
| 3.  | Cp-R          | 1.43     | 2.30          | 4.98     |
| 4.  | Dt-L          | 0.62     | 3.48          | 2.25     |
| 5.  | Ad-R          | 0.30     | 1.96          | 1.71     |

Sm-L (Spondias mombin leaf),; Cz-L (Croton zambasicus; leaf), Cp-R (Calliandra portoricensis – Root), Dt-L (Dennettia tripetela - leaf) and Ad-R (Anthocleista djalonensis - Root);

From the above table, most of the phytoconstituents were extractable in polar solvents.

Table-3: The susceptibility testing results for the sample extracts and controls against the selected microorganisms

| S/N | Table-3: The susceptibility testing results for the sample extracts and controls against the selected mid S/N |                          |                        |                       |                        |                       |                   |                        |                        | icroor                  | croorganisms           |                            |                    |                         |                        |                    |                        |                        |                    |                        |                       |                   |                        |
|-----|---------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|-----------------------|------------------------|-----------------------|-------------------|------------------------|------------------------|-------------------------|------------------------|----------------------------|--------------------|-------------------------|------------------------|--------------------|------------------------|------------------------|--------------------|------------------------|-----------------------|-------------------|------------------------|
|     | Solvent of extraction Plant Species                                                                           |                          | S<br>EX                | Sa<br>KT.             | CTR.                   | EX                    | Ce<br>XT.         | CTR.                   | EX                     | Bs<br>XT.               | CTR.                   |                            | Kp<br>XT.          | CTR.                    |                        | Sf<br>XT.          | CTR.                   | EZ                     | Ca<br>XT.          | CTR.                   | EX                    | An<br>XT.         | CTR.                   |
|     | pecies                                                                                                        | extraction               |                        |                       |                        |                       |                   |                        |                        |                         |                        |                            |                    |                         |                        |                    |                        |                        |                    |                        |                       |                   |                        |
| 1   |                                                                                                               | Hexane                   | 15.0<br>0±0.<br>40     | 10.0<br>0±0.<br>30    | 23.0<br>0±0.<br>15     | 12.0<br>0±0.<br>25    | 5.00<br>±0.<br>70 | 23.0<br>0±0.<br>23     | 20.0<br>0±0.<br>60     | 20<br>8.00<br>±<br>0.60 | 30.0<br>0±0.<br>25     | 13.<br>00±<br>10           | 10.0<br>0±<br>0.50 | 15.00<br>±0.85          | 8.00<br>±0.3<br>0      | -                  | 17.0<br>0±0.<br>45     | 17.0<br>0±0.<br>48     | 10.0<br>0±0.<br>25 | 15.0<br>0±0.<br>40     | 7.00<br>±0.6<br>0     | -                 | 13.0<br>0±0.<br>50     |
|     | Cp (Root)                                                                                                     | Ethyl acetate            | 17.0<br>0±0.<br>35     | 11.0<br>0±0.<br>80    | 21.0<br>0±0.<br>15     | 13.0<br>0±0.<br>75    | 5.00<br>±0.<br>70 | 15.0<br>0±0.<br>75     | 15.0<br>0±0.<br>20     | 7.00<br>±0.6<br>5       | 22.0<br>0±0.<br>30     | 10.<br>00±<br>0.1<br>0     | 5.00<br>±<br>0.40  | 14.00<br>±0.90          | 16.0<br>0±0.<br>85     | 9.00<br>±<br>0.20  | 30.0<br>0±0.<br>35     | 25.0<br>0±0.<br>50     | 15.0<br>0±0.<br>80 | 15.0<br>0±0.<br>40     | 15.0<br>0±0.<br>15    | 5.00<br>±0.<br>20 | 11.0<br>0±0.<br>60     |
|     |                                                                                                               | Methanol                 | 14.0<br>0±0.<br>50     | 5.00<br>±0.4<br>0     | 15.0<br>0±0.<br>70     | 8.00<br>±0.1<br>0     | 6.00<br>±0.<br>80 | 15.0<br>0±0.<br>25     | 21.0<br>00±0<br>.20    | 11.0<br>0±<br>0.25      | 17.0<br>0±0.<br>35     | -                          | -                  | 14.00<br>±0.65          | 18.0<br>0±0.<br>60     | 10.0<br>0±<br>0.40 | 35.0<br>0±0.<br>25     | 28.0<br>0±0.<br>55     | 15.0<br>0±0.<br>70 | 16.0<br>0±0.<br>15     | -                     | -                 | 13.0<br>0±0.<br>70     |
| 2   |                                                                                                               | Hexane                   | 20.0<br>0±0.<br>25     | 9.00<br>±0.8<br>0     | 35.0<br>0±0.<br>35     | -                     | ı                 | 21.0<br>0±0.<br>20     | 12.0<br>0±0.<br>15     | -                       | 21.0<br>0±0.<br>70     | 1                          | -                  | 13.00<br>±0.85          | 1                      | 1                  | 23.0<br>0±0.<br>40     | 10.0<br>0±0.<br>65     | ı                  | 11.0<br>0±0.<br>80     | -                     | ı                 | 12.0<br>0±0.<br>30     |
|     | Sm (Leaf)                                                                                                     | Ethyl acetate            | 20.0<br>0±0.<br>35     | 11.0<br>0±0.<br>50    | 24.0<br>0±0.<br>20     | -                     | 1                 | 16.0<br>0±0.<br>10     | 5.00<br>±0.8<br>0      | -                       | 10.0<br>0±0.<br>35     | 7.0<br>0±0<br>.25          | -                  | 12.00<br>±0.60          | 11.0<br>0±0.<br>15     | 1                  | 35.0<br>0±0.<br>50     | -                      | 1                  | 13.0<br>0±0.<br>45     | -                     |                   | 11.0<br>0±0.<br>25     |
|     |                                                                                                               | Methanol                 | -                      | -                     | 17.0<br>0±0.<br>60     | -                     | T                 | 21.0<br>0±0.<br>75     | 8.00<br>±0.8<br>5      | ı                       | 30.0<br>0±0.<br>45     | ı                          | 1                  | 10.00<br>±0.20          | ı                      | T                  | 8.00<br>±0.3<br>0      | ı                      | T.                 | 15.0<br>0±0.<br>20     | ı                     | T                 | 12.0<br>0±0.<br>60     |
| 3   |                                                                                                               | Hexane                   | 20.0<br>0±0.<br>50     | 9.00<br>±0.7<br>5     | 35.0<br>0±0.<br>75     | -                     | 1                 | 28.0<br>0±0.<br>80     | 20.0<br>0±0.<br>55     | 5.00<br>±0.3<br>5       | 27.0<br>0±0.<br>15     | 11.<br>00±<br>0.2<br>5     | 1                  | 12.00<br>±0.60          | -                      | 1                  | 25.0<br>0±0.<br>10     | 11.0<br>0±0.<br>20     | 1                  | 14.0<br>0±0.<br>70     | 7.00<br>±0.3<br>0     | 1                 | 11.0<br>0±0.<br>45     |
|     | Cz (Leaf)                                                                                                     | Ethyl acetate   Methanol | -                      |                       | 21.0<br>0±0.<br>50     |                       | 1                 | 28.0<br>0±0.<br>65     |                        | 1                       | 7.00<br>±0.1<br>5      | 10.<br>00±<br>0.4<br>0     |                    | 23.00<br>±0.65          | 20.0<br>0±0.<br>20     | 11.0<br>0±0.<br>80 | 30.0<br>0±0.<br>30     | -                      | 1                  | 11.0<br>0±0.<br>10     | -                     | 1                 | 13.0<br>0±0.<br>40     |
|     |                                                                                                               | Methanol                 | -                      | -                     | 21.<br>00<br>±0.<br>25 | -                     | -                 | 10.<br>00<br>±0.<br>35 | 10.<br>00<br>±0.<br>60 | -                       | 27.<br>00<br>±0.<br>35 | -                          | -                  | 100<br>.00<br>±0.<br>75 | -                      | -                  | 9.0<br>0±<br>0.8<br>0  | 5.0<br>0±<br>0.3<br>0  | -                  | 12.<br>00<br>±0.<br>70 | -                     | -                 | 11.<br>00<br>±0.<br>45 |
| 4   |                                                                                                               | Hexane                   | 12.<br>00<br>±0.<br>85 | -                     | 35.<br>00<br>±0.<br>25 | 8.0<br>0±<br>0.5<br>5 | -                 | 23.<br>00<br>±0.<br>40 | -                      | -                       | 26.<br>00<br>±0.<br>60 | -                          | -                  | 10.<br>00±<br>0.3<br>5  | -                      | -                  | 23.<br>00<br>±0.<br>15 | -                      | -                  | 10.<br>00<br>±0.<br>90 | -                     | -                 | 13.<br>00<br>±0.<br>25 |
|     | Dt (Leaf)                                                                                                     | Ethyl acetate   Methanol | 15.<br>00<br>±0.<br>35 | 5.0<br>0±<br>0.7<br>0 | 33.<br>00<br>±0.<br>20 | -                     | 1                 | 25.<br>00<br>±0.<br>40 | -                      | -                       | 10.<br>00<br>±0.<br>15 | 15<br>.0<br>0±<br>0.<br>75 | 1                  | 10.<br>00±<br>0.2<br>0  | 12.<br>00<br>±0.<br>45 | ı                  | 28.<br>00<br>±0.<br>50 | -                      | ı                  | 14.<br>00<br>±0.<br>70 | -                     | 1                 | 12.<br>00<br>±0.<br>35 |
|     |                                                                                                               | Methanol                 | 9.0<br>0±<br>0.3<br>0  | -                     | 21.<br>00<br>±0.<br>50 | -                     | -                 | 8.0<br>0±<br>0.4<br>5  | 17.<br>00<br>±0.<br>65 | 12.<br>00<br>±0.<br>75  | 37.<br>00<br>±0.<br>20 | -                          | 1                  | 11.<br>00±<br>0.3<br>5  | -                      | -                  | 8.0<br>0±<br>0.6<br>0  | -                      | -                  | 11.<br>00<br>±0.<br>85 | -                     | -                 | 14.<br>00<br>±0.<br>10 |
|     |                                                                                                               | Hexane                   | 12.<br>00<br>±0.<br>70 | -                     | 22.<br>00<br>±0.<br>35 | -                     | ı                 | 15.<br>00<br>±0.<br>25 | -                      | -                       | 30.<br>00<br>±0.<br>80 | ı                          | 1                  | 9.0<br>0±0<br>.35       | ı                      | ı                  | 10.<br>00<br>±0.<br>70 | ı                      | ı                  | 15.<br>00<br>±0.<br>25 | 9.0<br>0±<br>0.6<br>5 | ı                 | 13.<br>00<br>±0.<br>35 |
|     | Ad (Root)                                                                                                     | Ethyl                    |                        | -                     | 20.<br>00<br>±0.<br>45 | -                     | -                 | 25.<br>00<br>±0.<br>70 | -                      | -                       | 8.0<br>0±<br>0.1<br>5  | -                          | 1                  | 11.<br>00±<br>0.3<br>0  | -                      | -                  | 32.<br>00<br>±0.<br>60 | -                      | -                  | 12.<br>00<br>±0.<br>40 | -                     | -                 | 14.<br>00<br>±0.<br>80 |
|     |                                                                                                               | Methanol                 | -                      | -                     | 10.<br>00<br>±0.<br>25 | -                     | T                 | 11.<br>00<br>±0.<br>75 | 11.<br>00<br>±0.<br>10 | ı                       | 25.<br>00<br>±0.<br>40 | ı                          | 1                  | 13.<br>00±<br>0.3<br>0  | ı                      | T                  | 28.<br>00<br>±0.<br>55 | 11.<br>00<br>±0.<br>20 | ı                  | 12.<br>00<br>±0.<br>50 | ı                     | T                 | 11.<br>00<br>±0.<br>75 |

Sm-L (Spondias mombin leaf),; Cz-L (Croton zambasicus; leaf), Cp-R (Calliandra portoricensis – Root), Dt-L (Dennettia tripetela - leaf) and Ad-R (Anthocleista djalonensis - Root);

MDIZ = Mean Diameter of Inhibition Zone (mm); EXT. = extracts and standard reference samples in parenthesis.

( - ) = No inhibition of growth field. Values were expressed as mean  $\pm$  SEM; n=3; Analysis was processed with (SPSS-version 20.0) software and a one way (ANOVA) at P $\leq$ 0.05.

Table-5: Minimum Inhibitory Concentration (MIC) AND (TA) for the sample extracts and controls against the selected microorganisms

| S/N | N Plant Solvent Test Microorganisms |         |            |     |           |     |            |     |            |     |               |     |            |     |            |     |
|-----|-------------------------------------|---------|------------|-----|-----------|-----|------------|-----|------------|-----|---------------|-----|------------|-----|------------|-----|
|     | Species                             | of      |            |     | Bs        |     | Kp         |     | Sf         |     | Ca            |     | An         |     |            |     |
|     |                                     | extract | MIC        | TA  | MIC       | TA  | MIC        | TA  | MIC        | TA  | MIC           | TA  | MIC        | TA  | MIC        | TA  |
|     | C.p                                 | n-Hx    | 10.00±0.15 | 1.4 | 10.00±0.7 | 1.4 | 5.00±75    | 2.8 | 10.00±0.80 | 1.4 | 10.00±0.45    | 1.4 | 5.00±0.15  | 2.8 | 10.00±0.45 | 1.4 |
|     | (Root)                              | Eto Ac  | 5.00±0.45  | 4.6 | 5         | 4.6 | 5.00±0.50  | 4.6 | 5.00±0.45  | 4.6 | $5.00\pm0.85$ | 4.6 | 5.00±0.50  | 4.6 | 5.00±0.20  | 4.6 |
|     |                                     | MeOH    | 5.00±0.60  | 10. | 5.00±0.30 | 4.9 | 10.00±0.25 | 4.9 | 10.00±0.15 | 4.9 | 10.00±0.20    | 4.9 | 5.00±0.85  | 10  | 10.00±0.60 | 4.9 |
|     |                                     |         |            |     | 10.00±0.6 |     |            |     |            |     |               |     |            |     |            |     |
|     |                                     |         |            |     | 0         |     |            |     |            |     |               |     |            |     |            |     |
|     | C.z                                 | n-Hx    | 5.00±0.75  | 4.2 | -         | _   | 10.00±0.40 | 2.1 | -          | _   | -             | -   | 10.00±0.35 | 2.1 | 20.00±0.45 | 1.1 |
|     | (Leaf)                              | Eto Ac  | -          | -   | 10.00±0.8 | 2.1 | -          | -   | 10.00±0.60 | 2.1 | 10.00±0.40    | 2.1 | -          | -   | -          | -   |
|     |                                     | MeOH    | -          | -   | 0         | 1.2 | -          | -   | -          | -   | -             | -   | -          | -   | -          | -   |
|     |                                     |         |            |     | 20.00±0.4 |     |            |     |            |     |               |     |            |     |            |     |
|     |                                     |         |            |     | 5         |     |            |     |            |     |               |     |            |     |            |     |
|     | Sm                                  | n-Hx    | 5.00±0.80  | 2.8 | -         | _   | -          | -   | -          | -   | -             | -   | -          | -   | -          | -   |
|     | (Leaf)                              | Eto Ac  | 5.00±0.35  | 3.8 | -         | -   | -          | -   | -          | -   | 10.00±0.75    | 1.9 | -          | -   | -          | -   |
|     |                                     | MeOH    | -          | -   | -         | -   | -          | -   | -          |     | -             | -   | -          | -   | -          | -   |
|     | Dt (Leaf)                           | n-Hx    | 20.00±0.50 | 3.1 | 10.00±0.6 | 6.2 | -          | -   | -          | -   | _             | -   | -          | -   | -          | -   |
|     |                                     | Eto Ac  | 10.00±0.80 | 3.5 | 0         | 3.5 | -          | -   | 10.00±25   | 3.5 | 10.00±0.10    | 3.5 | 10.00±0.20 | 3.5 | -          | -   |
|     |                                     | MeOH    | 20.00±0.25 | 1.2 | 10.00±0.4 | -   | 10.00±0.75 | 2.3 | -          | -   | _             | -   | -          | -   | -          | -   |
|     |                                     |         |            |     | 0         |     |            |     |            |     |               |     |            |     |            |     |
|     |                                     |         |            |     | -         |     |            |     |            |     |               |     |            |     |            |     |
|     | Ad                                  | n-Hx    | 10.00±0.15 | 3.0 | -         |     | -          | -   | -          | -   | -             | -   | -          | -   | 20.00±0.10 | 1.5 |
|     | (Root)                              | Eto Ac  | <b>-</b>   | -   | -         | -   | -          | -   | -          | -   | -             | -   | -          | -   | -          | -   |
|     |                                     | MeOH    | <b>-</b>   | ŀ   | 20.00±0.2 | 9   | 20.00±0.20 | 0.9 | -          | -   |               | -   | 20.00±0.15 | 0.9 | -          | -   |
|     |                                     |         |            |     | 5         |     |            |     |            |     |               |     |            |     |            |     |

Sm-L (Spondia smombin leaf),;Cz-L (Croton zambasicus; leaf), Cp-R (Calliandra portoricensis – Root), Dt-L (Dennettia tripetela - leaf) and Ad-R (Anthocleista dialonensis - Root);

MIC (mg/ ml) = Minimum Inhibitory Concentration

TA (ml/g) = Total Activity (Quantity of material extracted from 1 g of plant material in mg, divided by MIC in mg/ml [21].

Values were expressed as mean  $\pm$  SEM; n=3; Analysis was processed with (SPSS-version 20.0) software and a one way (ANOVA) at P<0.05.

## **CONCLUSION**

The over all report of this study had scientifically justified their uses in Traditional medicine. The findings also were consistent with the earlier reports on the plant samples. *Calliandra portoricensis* that exhibited good antibacterial and antifungal activities was a good candidate for further investigation. *Croton zambasic*us ranked second as an equally good antibacterial agent but not as effective an antifungal agent.

# **ACKNOWLEDGEMENT**

Staff members and Laboratory facilities of Pharmacognosy & Phytotherapy and Pharmaceutical & Medicinal Chemistry Departments both of Faculty of Pharmaceutical Sciences, University of Port Harcourt, Rivers State, Nigeria.

**Conflict of Interest:** There was no conflict of interest involved in this research.

#### REFERENCES

1. WHO. (1978). The Promotion and Development of Traditional Medicine. Technical Report Series. Geneva.

- WHO. (1979). Resolution Traditional Medicine. WHO document No. EB. 63
- Pamploma-Roger, G. D. (1998). Encyclopedia of Medicinal Plants Vol. I & II. Education and Health, Library. Artes Graficas Toledo Spain. 405.
- WHO. (2001). A report of the Inter Regional Workshop on Intellectual Property Report in the Context of Traditional Medicine. Bankok Thailand, WHO/EDM/TRM/2001. 5
- 5. WHO. (2001). Intervention and Strategies to improve the use of the antimicrobials in developing countries. A review. WHO/CD/CRS/2001: Geneva, 2.
- 6. WHO. (2002). Monitoring Antimicrobial Usage in Food Animals for the Protection of Human Health. Report of A WHO Consultation. WHO/CDS/CRS/EPH/2002 OSINowayp10.
- 7. Andriole, V. T. (1988). The future of Quinolone Drugs. 3(17): 27-33.
- 8. Ayoka, A. O., Akomolafe, R. O., Akinsomusoye, O. S., & Ukponnwan, O. E. (2008). Medicinal and Economic value of *Spondias mombin*. *Biomedical Research*, 11:129-136.
- 9. Iseghohi, S. O. (2015). A review of the uses and medicinal properties of *Dennettia tripetala* (pepper fruit). *Medical Sci*ence, 3(4):104-111.
- 10. Aguwa, C. N., & Lawal, A. M. (1988). Pharmacologic studies on the active properties of *Calliandra portoreseensis* leaf extracts. *Journal ethnopharmacol*, 22(1):63-71.
- Inviare, F. R., Woody, S., & Barsett, H. (1961).
   Plants of Ghaia with special reference to their use.
   Oxford University Press, London, United Kingdom. 861.

- 12. Abo, K. A., Ogunleye, V. O., & Ashidi, J. S. (1999). Antimicrobial potential of *Spondias mombin*, *Croton zambascum* and *Zygotritomia croceae*. *Phytother Research*, 13(6): 494-7.
- Berry, J. P., & Rodrigez, E. (1984). 32 Bench Top Bioassays. Methods in Chemical Prospecting. Backley, L. H. Horticulture, Cornell University Ithaca. New York. 1-9.
- 14. Carlson, H. J., Douglas, H. G., & Robertson, J. (1948). Antibacterial substances separated from plants. *Journal of bacteriology*, 55(2), 241.
- 15. Skinner, I. A. (1955). In "Modermme Method de Pflazninanalse". Paech, K., and Tracey, M. V. ed Spinger-Verleg- Berlin: 111:626-725.
- Vanden-Berghe, D. A., & Vlietinck, A. J. (1991).
   In methods in plant biochemistry Vol. 6 assays for Biochemistry (Hostettmanned.) Instit. Of Pharmacognosy and Phytochemistry. University of Leusanne Switzerland Academic Press, London. 49.
- 17. Chessbrough, M. (2008). Medical Laboratory Manual for Tropical Countries. Low Priced edition. Butter Worth and Co. Ltd. Cambridge UK. 201(11).

- 18. Kavanagh, F. (1972). Analytical microbiology. Academic Press. New York USA. 11(11).
- Murray, P., Baron, E. P., Faller, M., Tenover, F., & Yolken, R. (1995). Manual for Clinical Microbiology. ASM Press Washington DC.
- 20. Abdu-Rabim, S. A., Almaghaoul, A. Z., & Mohammed, N. E. B. (2016). Antimicrobial Activity of *Croton zambazicus, Acadia ehrenbergiana* and *Fayoniacretica. National Journal of Advanced Research*, 2(3):11-21.
- 21. Eloff, J. N. (2004). Quantifying the bioactivity of plant extracts during screening and bioactivity guided fractionation. *Phytomedicine*, 11, 371-372.
- 22. Bloomfield, S. I. (1991). Methods for assessing antimicrobial activity. In Mechanisms of action of Chemical Biocides; Their Study and Exploitation. (ed.). Dengor, S. P., & Hugo, W. B. 1-22. Oxford Blackwell Scirntific Publications, Society for Applied Bacteriology. Technical Series No. 27.
- 23. Okore, V. C. (2005). Principles of the pharmaceutical application of antimicrobial agents.1<sup>st</sup> Edition. Elder mark. Nigeria, 212-218.