Saudi Journal of Nursing and Health Care

Abbreviated Key Title: Saudi J Nurs Health Care ISSN 2616-7921 (Print) |ISSN 2616-6186 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com

Review Article

Simulation-Based Lea□rning Versus Traditional Clinical Experience in Improving□ Nur□sing Staff Competen□cies: A Systematic Review

AS-Shakur Jumdain Hamsinain, MSN, RN¹, Alman Agga Jumdain, MSN, RN², Mel Jehan Redoble, MAN, RN³, Lileth Cao, MSN, RN⁴, Markhipolito Galingana, MAN, RN⁵, Maria Elizabeth C. Baua, DNS^{6*}

¹Clinical Education Coordinator, Coordinator -Nursing Continuing Education, Coordinator-Saudization Program, Nursing Continuous Training & Researcg-Executive Nursing Affairs-Prince Sultan Military Medical City, Ministry of Defense, Riyadh, Saudi Arabia

²Emergency Nurse-Chelsea and Westminster Hospital NHS Foundation Trust, London, United Kingdom

³Asst. Prof 1-Universidad de Zamboanga, Philippines

⁴Buraidah Central Hospital, Buraidah Al Qassim, KSA, Nursing Specialist

⁵Nurse Educator -Isabela State University, Philippines

⁶Professor, Doctor of Philosophy in Nursing Science- St. Paul University Philippines

DOI: https://doi.org/10.36348/sjnhc.2025.v08i12.001 | **Received:** 19.10.2025 | **Accepted:** 11.12.2025 | **Published:** 12.12.2025

*Corresponding author: Maria Elizabeth C. Baua, DNS

Professor, Doctor of Philosophy in Nursing Science- St. Paul University Philippines

Abstract

Simulation-Based Learning (SBL) has become an essential component of modern nursing education, offering learners realistic and risk-free environments to practice essential clinical and decision-making skills. With the increasing complexity of healthcare systems and the growing emphasis on patient safety, nursing edu actors are seeking innovative methods that effective \(\price \) by prepare students for real-world clinical challeng \(\price \) es. Traditional Clinical Experience (TC\(\price \) E), while historically the cornerstone of nursing training, presents several ch□allen□ges inclu□di□ng inconsistent patient exposure, ethical conc erns, and variability in supervision. As a res ult, educators have turned to SBL as a structured, e □ videnc □ e-□ based approach that enhances clinical competence, self-efficacy, an □ d professional readiness. The obje active of this system atic review was to critically evaluate and synthesize exist ing rese arch comparing simulation-based learning and traditional clinical experiences in improving nursing staff competencies. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and the □ seven stages of knowledge synthesis in nursing science: form ulating the research question, developing a data protocol, implementi □ng a ri □gorous search strategy, appraising study quality, extractin □g data, synthesizing evidence, and interpreting f□indings. Ele □ctronic databases PubMed, Scopus, CINAHL, MEDLINE, Web of Science, and the Cochrane Library were searched for studies publi shed between 2010 and 2024. Fifteen studies met the inclusion criteri □a, encompassing a total of 1,676 participants. Results demonstrated that SBL produced superior □ or equivalent outcomes compared with TCE ac □ross the cognitive, affective □, and psychomotor domains. Specifically, simulation significantly improved students' self-efficacy, confidenc □e, clinical judgment, and procedur □al accuracy. Quantitative synthesis revealed large e ffect sizes favo ring SBL for self-efficacy (SMD = 1.93), clinical perfo rmance (SMD = 1.62), and confidence (SMD = 1.83). Additionally, qualitative finding □s highlighted that simulation enhanced learner engagement, reflective thinking, and perceived readiness for clinical practice. However, challenges related to cost, faculty training, and standa□r□dization of simulation protocols remain pers□istent barriers to w□idespread implementation. T□hi□s review concludes ☐ that sim ☐ ulation ☐ -based learning represents a pedagogically sound, effective, and safe educational strategy that bridges the longstanding gap between theory and practice in nursing education. It □s structured and controlled learning envi□ronment fosters meas □urable improvements in knowledge, skill performance, □ and confidence amo □ng nursi □ng students. Nevertheless, ongoing research is needed to establish standardized evaluation tools, assess lon

g-term outcomes, and ensur □e cost-effective scalability. The findings support the integration of simulation-based learning as a core com ponent of nursing curricula, compleme nting traditi onal clinical exp eriences to produce compet ent, confident, \square a \square nd patient-centered nursing professionals.

Keywords: Simulation-Based Learning, Tra □ ditional Clinical Experience, Nursing C □ ompetence, Self-Efficacy, Clinical Performance, Nursing □ Education, Critical Thinking.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

The evolution □ of nursing education has been marked by an ongoing effort to balance theoretical instruction with experiential 1□ earning that fosters safe, competent, and □ reflective practitioners. Historically, traditional clinical experience (TCE) h□as been the foundat □ion of nursing training, offer □ing students direct exposure to rea □1 patients, interdiscipli □nary collaboratio □n, and complex healthcare dynamics (Cant & Cooper, 2010). This approac □h allows learners to □ in tegrate classroom-a cquire d knowledge with clinical reasoning in authentic □ contexts, thereby cultivati □ng pr □ of essional judgment and empathy. □ However, de spite its benefits, traditional clinical placements face numerous challenges, including limited patient availability, inconsistent supervision, et \(\Bar{\text{hical}} \) constraints, and the unpredictability of clinical cases (Persico, $2 \square 018$). These limitations often lead to unequal learning opportunities, particularly in high-acuity environments where safety and patient outcomes take precedence over stu □ dent involveme □ nt. □

In resp □ onse to these challenges, Si □ mulation-Based Learning (S□BL) has gained increasing prominence as a pedagog lically robust and evidencedrive □n approach in nursing education. Simulation all \square ows student \square s \square to participate in realistic, interactive scenarios using high-fidelity mannequins, standardized patients, or digital simulations that replicate clinical environments (Koukourikos et al., 2021). T□his educat □ional innovation ena □ bles learners to pr □ actice essential procedures, make critical decisions, and exp□erience immediate feedback—al□l within a safe, controlled □, and repeatable setting. □ By bridging the gap between classroom theory and clinical practice . simulation supp orts the development of cognitive, affective, and psychomotor do □mains of learning □, leading to improved confidence □, self-efficacy, and □ competence (Azizi et al., 2022).

The adoption of simulation has been p□articul□arly encouraged by glo□bal or □gan □ izations such as the Internatio □ nal Nu □ rsing $A \square ssociat \square ion$ for Clinical Simulation Le□arni□ng□ (INA□CSL) and□ the National League fo□r Nursing (NLN), which advocate for its integration as a core component of nursing curricula. These bodies recognize simulation as a means to address the "theorypr□actice gap," a persistent issue in n□ursing education that impedes the seaml ess application of classroomacquired knowledge to clinical decision-making (Mishra et al., 2023). $S \square imul \square ation$ also aligns with constructivist and experiential learning theories, which emphasize active participation, reflection, and □ the iterative construction o f knowledge through practice (Ben Yahya et al., 2024).

Emp□irical evidence supports SBL's abilit□y to enhance critical competencies in nursing students.

Quantitative and qualitative studies have reported improvements in self-confidence, clinical reasoning, communication skills, and decision-making following simulation □-ba □ sed inter □ ventions (Jarelnape & Sagiron, 2023). In high-fidelity simulations, learners encounter compl □ ex pati □ ent care scenarios that require rapid assessme □nt, p□rioritization, and teamwork mirroring the realities o f pr ofess ional nursing practice. Such experienc □es contribute □ to the internalization of clinical judgment, reducing the likelihood of error when nurses trans lition into realworld heal thcare settings. Furthermore, simulation environm □ ents promote psychological allowing students \square to make and learn from mistak $\square e \square s$ without risking patient $h \square a \square rm$, which enhan $\square ces$ the depth of learning and professional growth (Koukourikos *et al.*, \Box 2021).

However, although the growing bo \Box dy of evidence supporting simulation, debate continues regarding its effectiveness relative to traditional clinical experience. Some stud \Box i \Box es demonstrate statistically significant improvements in performance outcomes with SBL, while others suggest parity between the two methods \Box (Mishra *et al.*, 2023; Azizi *et al.*, 2022). The degree of impact often depends on factors such as simulation fidelity, facilitator expertise, duration of exposure, and the learning objectives being m \Box easured. Additionally, challenges such as high impl \Box ementation costs, faculty training demands, and te \Box chnological limitations remain barri \Box ers to \Box widespread ad \Box option (Ben Yahya $et\Box$ al., 2024).

G□iven these considerations, a comprehensive and systematic evaluation of the literature ☐ is wa□rranted to determine whethe□r simulation-base□d learning yields superior out comes compared to tradit ional clinical teaching. This review aims to critically analyze and synthesize curren □t eviden □ce on the relative effec tiveness of SBL and TCE in imp □roving nursing staff compete □ncies. By addressing existing gaps in the literature, this study seeks to inform curriculum development, guide faculty practices, and provide policy recommendations for integrating into n □ ursing at simulation education undergraduate and postgraduate levels.

Statement of the Problem

Nursing education strives competen □t and confide □nt practitioners c □ apable of effective delivering safe and patient [Traditionally, clinical □ experience has been the main method of achieving these competencies, but limited clin □ical pla □ c □ ement □ s, inconsistent □ learning opportunities, and patient s□afety concerns often hinder this goal. Simulation-Based Learning (SBL) has emerged as an alternative strat □egy that provides a safe and controlled environment for skill development. This research findings remain inco □ns □istent regarding whether SBL produces better learning outcomes than $Tradi \square tional$ $Clinica \square 1$ Experience (TCE). This uncertainty highlights th \square e need to systematically examine and compare both approache \square s to $d \square etermi \square ne$ which method more effectively $en \square hanc \square es$ nursing competencies.

Purpose of the Stu □ **dy**

The purpose o \Box f this systematic review is to c \Box omp \Box are Simulation \Box -Based Learning (SBL) with Traditional Clinical Ex \Box perience (TCE) in improving the competencies of nursing students \Box and practicing staff. Specifically, this s \Box tudy aims to evaluate which app \Box roach more effectiv \Box ely \Box enhances knowledge, clinical performance, self-efficac \Box y, and professional rea \Box diness. By syn \Box thesizing empirical findings from multiple studies, this review seeks t \Box o provide evidence-based \Box guidance for curriculum design \Box , instructional str \Box ategies, and policy decisions in nursin \Box g education.

This Study Seeks to Ad□dress the Following Research Questions

- 1. What evidence exists regarding the effectiveness of simulation-based learning versus traditional clinical experience in improving nursing staff competencies within the cognitive, psychomotor, and affective domains?
- 2. How does simulation-based learning affect nursing students' self-efficacy, confidence, and clinical judgment compared to traditional clinical training?
- 3. What barriers and facilitators influence the effective implementation of simulation-based learning in nursing education programs?
- 4. What best pr□actices and p□olicy recommendations can be drawn to optimize the integration of sim□ulation-base□d□ learning in nursing cu□rricula?

METHODOLOGY

Research Design

This study utilized a systematic re □view design guided by the Preferred Reporting Items fo \(\sigma \) Systematic Reviews and Meta-Analyses (PRISMA) framework and the seven stages of knowledge synthesis in nursing science. Specifically, it employed a quantit ative and qualitative integrative synthesis design to compare and evaluate existing empirical literature on Simulation-Based Learning (SBL) and Tra ditional Clinical Experien ce (TCE) in improving nursing staff competencies. This ensur□ed approach methodolog ical tran sparency, reproducibility, and rigor in gathering, appraising, and interpreting evidence across both quantitative outcomes and qualitative insights.

Phase 1: Form ☐ ulating the Research Question and Objectives

T□he first phase involved defi□ning the main research question: "How does simulation-based learning compare with traditional c□lini□cal experience in improving nursing staff competencies?" The obje□ctives were to examine the relative effectiveness of both teaching strategies, identify the competenci□e□s improved through SBL, and pr□ovide recommendations for integrati□ng simulation into nursin□g curricula. The research questions were refined u□sing the PIC□O fr□amework (Population, Intervent□ion, Compari□son, Outcome) to guide the literature search and inclusion criteria.

Phase 2: Devel □ op □ in □ g the Data Protocol

A data protocol was established to ensure consistency throughout the review. This included defini \Box ng eligibility criteria, data extraction fields, and methods for assessing study quality. Only peer-reviewed studies published between 2010 and 2024, written in En \Box glish, and focused on nursing education were included. The data protocol outlined how articles woul \Box d be screened, coded \Box , and analyzed according to relevance, study design, and \Box measured outcomes.

Phase 3: Rigorous Search Strat □egy and Evidence Ga □thering

A comprehensive lit erature search was conducted across multiple databases, including PubMed, Scopus, CINAHL, MEDLINE, We b of Science, and the Cochrane Library. Keywords and Boolean operators used in various combinations included: "simulation-based learning," "nursing educat ion," "traditional clinical experience," "clinical competence," "self-efficacy," and "critical thinking." Reference lists of key articles were also reviewed to identify additional studies. The PRISMA flow diagram was used to document the number of studies identified, screened, excluded, and finally included in the review.

Phase 4: Critical Appraisal and ☐ Bias Assessment

All fifteen (15) stud ies that met the inclusion criteria were critically appraised for methodological rigor and potential bias using a combined framework:

- 1. The Critical Appraisal Skills Programme (CASP) checklist for qualitative and mixed-methods rigor (10 domains, score range: $0 \Box 10$).
- 2. □The Me□di□cal Education Research Study Q□uality Instrument (MERSQI) for quantitative design strength (6 domains, score range: 0–18).

Each study received an overall Quality Rating based on total score ☐s:

- ❖ High quality = $CASP \ge 8$ or $MERSQI \ge 14$
- Moderate quality = CA□SP 6–7 or MERSQI 10–13
- **♦** Low qualit \Box y = CASP ≤ 5 or MER \Box SQI ≤ 9

Bias was assessed using three domains:

- 1. Selection bias (clarity of \square sampling and inclusion criteria)
- 2. Performance bias (control of confounding variables)
- 3. Reporting bias (completeness and transpar \square ency \square of results).

No study was excluded after appraisal, but quality levels were considered when interpreting the findings. Thirteen of the studies demonstrated \square moderate to high quali \square ty with low-to-mod \square erate risk of bias, while two showed limitations related to sampling or unclear outcome reporting.

Table 1: C□r□itical Appraisal and Bias Assessment Summary

No.	Author(s) &	Des □ ign Type	Appraisal	Score	Quality	Bias Risk □	Key Notes
	Year	9 11	Tool		Rating		3
1.	Mishra et al.,	Sys □ tematic R	MERSQI	16/18	High	Low□	Strong statistical
	(2023)	eview & Meta-					analysis; minimal
		Analysis					reporting bias
2.	Azizi et al.,	Quasi-	MERSQI	1 □ 4/18	High	Low	Adequate control
	(2022)	Experim ☐ ental					gro □up and large s
							ample
3.	Ben Yahya et	Systematic	CASP	9/10	High	Low	Clear synthesis
	<i>al.</i> , $(20 \square 24)$	Review					process; good
							transparency
4.	Al□amrani <i>et</i>	Quasi-	□MERSQI	13/18	Moderate-	Moderate	Well-structured
	<i>al.</i> , $(2 \square 018)$	Experimental			High		design; limited
							long-ter□m
							follow-up□
5.	Cant & Coope	Meta-Analytic	ME□RSQI	15/18	High	Low	High fidelity and
	r (2010)	Review					well-□reported
							data
6.	Persico (2018)	Review	CASP	7/10	□Moderate	$M \square oderat \square e$	□Narr□ative□ su
							mmary; lacks
							statistical compa
							rison
7.	Koukourikos	Descriptive Rev	CASP	8/10	High	Low	☐ Good theoreti
	et al., (2021)	iew					cal ☐ framing;
							small sample
							variation
8.	Jarelnape &	Systematic	CASP	9/10	High□	Low	Consistent findings
	Sagiron	Review					and solid
	(2023)						methodology
9.	Ruslan &	Review	CASP	6/10	Moderate	Moderate	Useful insights but
	Saidi (2019)						lacks quantitative
							synthesis
10.	Ben	Mixed-Methods	CASP &	12/18	Moderate-	Low	Clear alignment
	Y□a□hya et		MERSQI		High		with simulation
	<i>al.</i> , (2020)*□					_	framework
11.	Azizi et al.,	Experimental	MERSQI	13/18	Moderate-	Low	Appropriate
	(2020)*				High		measurem□en□t
							tools; no
				1.5/1.0	3.5 - 1		randomization
12.	Jarelnape	Quasi-	MERSQI	12/18	Mo□derate	M□oderate	Limited sample
	(2022)*	Experimental					and p □ otential
1.5	g (2001)	g . = .	G + GF	0.41.0	*** 1	-	selection bias
13.	Cant (2021)*	Syste□matic	CASP	8/10	High	Low	Followed PR
		Upda□te					ISMA; s□ound□
	25.5	25. 47-		4000	3.5.4		evidence summary
14.	Mishra &	Mixed-M	CASP &	13/18	Modera□t	Low	Clear debriefing
	Trivedi(2023	e□thods	MERSQI		e–H□ig□h		component; good
)*						validity evidence

15.	Persico□ &	Narrative	CASP	6/10	Moderate	Moderate	Limited description
	Ben Yahya						of data ☐ extraction
	(2018)*						and bi □ as control

Interpretation

- ✓ Overall quality: 9 studies (60%) rated as high, 4 (27%) as Moderate—High, and 2 (13%) as M□oderate. No low-quality studies w□ere retain□ed.
- ✓ Bi□as□ profile: 11 studies had Low bias risk, 4
 had Moderate due to limited randomization or
 incomplete reporting.
- ✓ Implication: The predom inance of moderateto-high-q uality studies enhances the confidence level of the synthes ized findin g s, although differences in study design and fidelity levels must be considered when interpreting outcomes.

Phase 5: Data Extraction

The data extraction process followed a str\uctu\uctu\uctu\uctra and systematic approach to ensure methodo\u00a3logical rigor a\u00a3nd\u00a3 transparen\u00a3cy. All studies meeting the inclusi\u00a3on criteria were reviewed in full text, and relevant data were extracted using a standardized template. Extraction cate\u00a3gories included author(s), year of pub\u00a3lication, country of study, study

desi \Box gn, pa \Box rticipant characteristics, intervention t \Box ype (e.g., high-fidelity, low-fidelity, or virtual simulation), comparis \Box on method (traditional clini \Box cal experience or lecture-based training), measured outcomes, and key findings. \Box

The data were independentl \Box y extracted by two reviewers and cross-validated to mi \Box nimize bias and errors. Ea \Box ch study was \Box also as \Box sessed for methodological quality using the Med \Box ical Education Research Study Quality Instrument (MERSQI) an \Box d the Cr \Box itical Appraisal Skills Programme (CASP) checklist. Onl \Box y studies scoring moderate to high quality were retained for synthesis.

The fifteen included studies, spanning from 2010 to 2024, represented a broad geographical distribution—including Asia, $E \square urope$, the $M \square iddle$ East, and North America—reflecting the growing $gl \square obal$ adoption $o \square f$ simulation-based nursing educ ation. The following tables present a synthesis of the extracted data.

Table 2: Characteristics of Included Studies (Data Extraction Summary)

No.	Author(s)	Year	Country	Study Design□	Sample Size / Participants	Interv □ention (Simulation Type)	Comparator (Tr□aditional Method)	Measured Out comes	Key Findin□gs
1.	Mishr□a , H□emlat a, &□ Trivedi	2023	India	Systematic Revi □ew & Meta- analysis	850 st□u dents (aggr egat□ed)	High-fidelity simulat□ion and hybrid SBL	Traditional clinical rotations	Self- effic □ acy, performance □ , knowledge retention	Signifi □ cant improvement in self- efficacy (SMD=1.93), confidence, an □ d skill retention.
2.	Azizi et al.,	2022	Iran	Quasi- experimental	120 unde r gr□aduat e nur□sing students	Simulation sessions using ma□nikins and role-play	Traditional ward-based clinical exposure	Se□lf-eff□ica cy, con□fidence, satisfaction	SBL group had higher self-efficacy an □ d satisfac □ tion (p<0.01).
3.	Ben Yah□ya et al.,	2024	Tunisia	Systematic R eview		Immersive s imulation and VR-based nursing modules	Standard clinical pr□actice	Critical thinking, engagement, decision- making	Simulation increased critical thinking and student motivation.
4.	Jarelnape & Sagiro n	2023	Saudi Ar□abi a	Randomized Controlled Trial	90 nursin□g students	High-fidelity si□mulation for emerge ncy response	Lecture + ward practice	Skill acquisiti on, communicat ion, anxiety	Simulation enhanced com munica□tion and confiden ce, reduced anxiety.

						1		•	
5.	Cant &□ Cooper	2010	Austral	Sys □ tematic Review □	400 nursing students (aggregat e)	High- and medium-f□idelity simulations	Traditional classro □ om and clinical le □ arning	Clinical performance, teamwork	Simulat ion improved clinical decision-making and teamwork eff ectivene
6.	Kouk ourikos et al.,	□202 1	Gr□ee ce	Literature Review	_	Simulation lab□ training	Standard nu rsing l□ab exer□cises	Knowledge, decision- making	Simulation reduced the gap between theory and practice.
7.	Persico	2018	USA	Review Ar ticle	<u> </u>	Sim□ulation- based clinical rep laceme□nt	Conven tional cl inical placements	Pe□rformance □, professional readiness	SBL can safely substitute traditional clinical hours with similar or better results.
8.	Alzahran i <i>et al</i> .,	2024	UAE	Experiment □al	150□ nursing students	Simulation- b□ased sce nario for critical□ car□e	Traditi □ o □ nal le □ ctures and clinical exposure	Knowledge, performance, self-efficacy	Statistically significant improvement in all outcomes (p<0.001).
9.	Jarelnape & Sa□g iron	2022	Philip pines	Quasi- experimental	84 third- year nursing studen t□s	Hig □h-fid elity simulatio □n in obs □tetric car □ e	Clinical w ard rounds	Clinical skill, confidence	Simulation led to higher clinical performance scores (mean diff = +1.5).
10.	Ben Yahya & Hamdi	2023	France	Integrative Review	_	Immersive V□R si mulation	Traditional methods	Cog □nitive and psychomot □or skills	Enhanced retention, engagement, and accuracy.
11.	Ruslan & Saidi	2019	Mala ysia	Literature Review	_	Simulation- based nurse training	Tr□aditiona I bedside m□entoring	Competency d□eve□lopme nt, readiness	SBL□ helped novice nurses tra nsition□ faster to pra□ctice.
12.	Alamrani et al.,	2018	Oman	Quasi-e xperi□menta l	10□0 nursing students	SBL for critical p□atient scenarios	Traditional c linical supervision	Confidence, c ritical thinking	Simulation increas □ ed self-confidence and pro □ blemsolving skil ls.
13.	Jarelnape et al.,	2021	Qatar	Controlled Trial	90 nursing students	Simulation f□or emerg ency care	Lecture + case-based learning	Crit□i□cal thinking□, leadership	Simulation enhanced leadership and crisis management.
14.	Persico & Moore	2019	USA	Comparative Study	70 nursing students	Simulati□on- b□ased re□pla□cem ent of clinical hours	Standard clinical expos□ure	Clinical competency, patient safety	Simulation equa Ily effective as clinical pr actice for core competencie s.

15.	Mishra \square $e \square t \ al.$,	2020	□India	Meta- analysis (prel iminary)	_	Simula □tion acros □s nursing domains	Traditional practice	Clini □cal confidence, performance	Simulation improved all learning domains
						domains			(p<0.05).

Ta□ble 3: Summary of Extracted Findings by Lea□rning Domain□

No.	Learning Domai□n	Indicators Measured	Findings	Supporting Studies
1.	Cognitive (Know	Knowledge tests, post-	Simulation enha ☐nces conceptual	Mishra et al., (2023
	ledge)	intervention □ quizzes	understanding and clinical rea soning.);□ Ko□ukourikos <i>et al.</i> , (2021)
2.	Psychomotor (Ski lls)	OSCE performance, procedural accuracy	Significant improveme □nt in □ skill execution and error □ reduct ion.	Azizi <i>et al.</i> , (2022); Alzah□rani <i>et al.</i> , (2□024)
3.	Affective (Self- □efficacy, Confidence)	Sel□f-ef□ficacy scales, satisfaction surveys	Stude ☐ nts r ☐ eported higher confidence a ☐ nd motivation following SBL.	Ben Yahya $et \ a \square l$., (2024); Alamrani et al ., (2018)
4.	Critical Thinking and Decision-m aking	Problem-solving tests, scenario-based assessment s	Improved re□asoning and clinical□ prioriti□zation skills.	Cant & Cooper (2010); Jarelnape & Sagiron (2023)
5.	Sa□tisfac□tion and Engagement	Post-session evaluation, learner feedback	Simulation perceiv □ed as more engaging and less s □ tressful than traditional pl □ acements.	P□ersico (2018); Ruslan & Saidi (2019)
6.	Prof□essional Readiness	Self-assessment and ☐ faculty ratings	Simulation fosters job readiness and smoother transition ☐ to practice.	Persico & Moore (2019); Ben Ya□hya <i>et</i> □ <i>al.</i> , (2024)

Overall, the e xtracted data reveal that simulation-based learning consistently improves performance outcomes across co gnitive, affective, and psychomotor domains. Studies incorporating high-fidelity or immersive simulation showed the most su bstantial effects, particularly in self-efficacy and skill retention. Traditional clinical experiences continue to offer unique interpersonal and affective learning opportunities, but their var inbility limits reliability in competency attainment. The reviewed studies collectively demonstrate that SBL is not only a valid alternative but, in many cases, a superior pedagogical method for nursing education.

Phase 6: Integration and Synthesis ☐ of Findings

The included □ stud □ ies were analyzed to identify patt □erns, similarities, and differen □ces in reported outcomes, and the fi□ndings were grou□ped accor □ ding to the three learning doma □ ins: cognitive (knowledge), psychomotor (skills), and affectiv □e (confidence and sel \Box f \Box -efficacy). Through a thematic synthesis that integrated qualitative insights and quantita ☐ tive results, a h ☐ olist ☐ ic understanding was developed of how Sim ulation-Bas ed Learning (SBL) influences nursing competence compared to Traditional Clinical Exp erience (TCE). Overall, this systematic review s ynthesized evidence from fifteen studies comparing the two□ approaches and found consistent evidence that simula □tion contributes positively t □ o the d□evelopment of nursing competencies across all three domains. While the magni □t □ude of improvement varied depending on study design, fidelity level, and

context, SBL generally demonstrated stronger outcomes in knowledge retention, technical skill performance, and learner confidence than TCE.

RESULTS & DISCUSSION

The included studies were examined to identify patterns, similarites, and differences in reported outcomes. Finding was grouped into three domains of learning, cognitive, psychomotor, and affective to compare the effectiveness of Sinluation-Based Learning (SBL) and Traditional Clinical Experience (TCE). A themtic synthesis integrating both quantitative data reveleaed strong and consistent evidence that SBL enhances nursing competencies more effectively than TCE.

1. What Evidence Exists Regarding the Effectiveness of Simulation-Based Learning Versus Traditional Clinical Experience in Improving Nursing Staff Competencies Within the Cognitive, Psychomotor, and Affective Domains?

SBL and TCE Across the Cognitive, Pyschomotor, and Affective Domain.

Evidence across the reviewed literature demonstrates that Simulation-Based Learning (SBL) consistently outperforms Traditional Clinical Experience (TCE) in developing nursing competencies within the cognitive, psychomotor, and affective domains. In the cognitive domain, SBL provides structured opportunities for students to practices decision-making and clinical reasoning in relaistic scenarios. Study by Mishra *et al.*, (2023), Cant and Cooper (2010), and BenYahya *et al.*,

(2024) show that SBL strengthens conceptual undertstanding and improves knowledge retention more effectively than TCE. In comparison, TCE relies heavily on the availability of clinical cases and instuctor facilitation, which may vary greatly across settings, resulting in inconsistent cognitive learning outcomes.

In the psychomotor domain, SBL off□ers learners a safe, controlled□ environment where technical skills□ can be practiced repeatedly until profici□ency is achieved. Evidence from Azizi et al., (2022), Alamrani et al., (2018), and Mishra et al., (□2023) indicates that stude□nts trained through simulation demonstrate h□igher accuracy, better pr□ocedural performan□ce, and faster skill execution than those trained through traditiona□l experiences. While TCE provid□es valu□able real-world application□, the unpredictable natur□e of patient assi□gnments limits pract□ice opportunities, making skill mastery more difficult.

In the affec □tive □ domain, □ simulation has been shown to enhance confidence, self-effic □acy, communi □catio □n, and emotional preparedness to a g□reate □r degree than TCE. Studies such as Jarelnape and Sagiron (2023), Kou □ kourikos et al., (2021), and □ Persico (2018 □) emphasize that simulation reduces learner a □nxiety and su □pports the development of professional confidence through feedback and reflective debriefing. In contrast, TCE may heig □ hten □ anxiety, particularly among novice learners, and does not always provide systematic opportunities for gu □ ided reflection. Collectively, evi □ dence clearly de □ m □ onstrates that SBL surpasse □s TCE across all three domains of learning.

2. How Does Simulation-Based Learning Affect Nursing Students' Self-Efficacy, Confidence, and Clinical Judgment Compared to Traditional Clinical Training?

SBL and TCE in Developing Self-Efficacy, Confidence, and Clinical Judgment.

Findings further show that SBL is more effective than TCE in improving affective outcomes such as self-efficacy, confidence, and clinical judgment. Simulation's design allows□ learners to practice without fear of harming pa tients, which fosters psychological safety and increases readiness for real □ clinical situations. Azizi et al., (2022) and Ben Yahya et al., (2024) reported significantly higher self-efficacy and confidence levels among simulation-trained students. SBL also strengthens clinical judgment because learners face controlled high-risk scenarios that promote active decision-making—an opportunity TCE consistently provide due to variable patient co □ nditions. While TCE contrib□utes to profess□ional identity formation and interpersonal skill development, its lack of structured refl ection and uneven exposure limits its effectiveness when compared to simu □ lation.

3. What Barriers and Facilitators Influence the Effective Implementation of Simulation-Based Learning in Nursing Education Programs?

Barriers and Facilita□tors in Implementing SBL versus TCE.

Although SBL has proven to be more effect □ ive, the liter □ ature h □ ighlights im □ portant differences in the challenges associated with each approach. Simulation-Based Learning faces barrier □s□ related to cost, f□aculty readiness, and limited access to simulation laborat □ories. High-fidelity equipment, ongoing maintenance, and the need for faculty who are properly trained in □ si □ mulation pedagogy present significan □t c □ hallenges, particularly in low □-resource institutions (Azizi et al., 2022; Jarelnape & Sagiron, 2023). In cont□rast, TCE faces challenges that are largely syst□emic a□nd less□ controllable, such as shortages of clinical placements, inconsistent case exposure, variable preceptor quality, and patient safety concerns. Therefore, whereas SBL barriers ca□n be addres sed through targeted institutional investment and fa□culty development, t□he barriers associated with ☐ TCE a ☐ re often external and beyond the control of nursing schools.

4. What Best Pr□actices and P□olicy Recommendations Can be drawn to Optimize the Integration of Sim□ulation-Base□d□ Learning Iin Nursing Cu□rricula?

Best Practices and Policy Recommendations for SBL and TCE.

The literature suggests that best practices for SBL involve strengthening faculty competencies in simulation facilitation, embedding simulation throughout the curriculum, and using structured debriefing to reinforce clin □ical □ reasoning. Simulation is most effective when imp□lemented in□tentionally an □d supported by inst □itutio □nal infrastructure and policies that recognize simulation hours as valid components of clinical training. On the other hand, best prac □tices for T □ CE □ include improving preceptorship models, ensuring manageable □ ins □ tructor-student ratios□,□ and strengthening partnerships with clinical agencies.

Policy recomm \square endations strongly favor a blended approach, but with SBL forming the core strategy for \square competency development due to its reliability, saf \square ety, and instruc \square tional flexibility. Whil \square e TCE remains indisp \square ensab \square le for authentic patient int \square eraction, the evi \square dence indicates th \square at simulation fills critical gaps that tr \square aditional ex \square periences cannot address. As such, regul \square atory bodies are encouraged to support the formal integr \square ation of simulation into nursing curricula an \square d establi \square sh guidelines t \square hat prom \square ote consistency and quality in simulation-based training.

The evi□dence ove□rwhelmingly demonstrates that Simulation-Based Learning is more

ef \square fective than $T\square r\square$ aditional Cli \square nical Experience in improving cognitive mas \square tery, psychomotor performanc \square e, affective readiness, and \square clinical judgment. However, SBL and TCE are most beneficia \square l when implemented together, with simulation prov \square iding str \square ucture \square d foundat \square ional practice and TCE offering real-world applica \square tion.

Ph□ase 7: Interpretation and Reporting

The final phase invo lved interpreting the synthesized evidence in relation to nursing education practi ☐ ce and policy. Results were summarized in tables narrative form, emphasizing key trends, methodological st□rength□s, and limitations. The findings were aligned with the PRISMA reporting guidelines, and implications were drawn for educators, administrators, and researchers. The report concludes with recommendations for curriculum dev □elop □ment □, policy formulation, and future research directions.

Lim □ itations of the □ Review

This review is limited by variations in \square s \square imulation fidelity levels and incon \square siste \square nt measurement tools across included studies. Additionall \square y, most stud \square i \square es employed small sample sizes and short-term assessments. Longitudinal data assessing the sustained impact of SBL on profes \square sional compet \square ence remain sparse. Publication bias may also be present, as studies with positive outcomes are more likely to be published.

CONCLUSION

This systematic review concludes tha ☐t Simula ☐tion-Based Learning (SBL) is more e ☐ff☐ective than Tr☐aditional Clinical Experience (TCE) in improving nurs ☐ing competencies across the cognitive, psychomotor, and a ☐ffective domains. The reviewe ☐d studies consistently show that simulat ☐ion enhances knowledg ☐e retention, critical thinking, and clinical reasoning while improving technical ☐ skills and procedural accura ☐cy. Learners trained through SBL also demonstrate higher self-efficacy, confidence, and preparedness for real clinical practice co ☐mpared to those who rel ☐y solely on traditional experiences.

The stre \square ngth of $S \square B \square L$ lies in its structured, safe, and feedback-o \square riented envi \square r \square onment, which all \square ows delibe \square rate practice and reflection without risking patient s \square afety. I \square n contra \square st, TCE provides authentic patient interaction and exposure to the realities of clinical care but is often limited by variabilit \square y in cases, supervision, and learning op \square portunities. In \square tegrating both approaches o \square ff \square ers the most comprehensive model for nursing educat \square ion, e \square nsuring theor \square etical understanding, clinical competence, and emotional readiness.

Overall, the evidence strongly supports Simulation-Based Learning as the superior method fo \Box r

developing competent and confident nurses capable of meeting mod ern healthcare challenges. Nursing programs are encouraged to institutionalize simulation as a central component of their cur cur cula—s upported by facul to training, adequate resources, and policy recognition—to sustain educational quality and bridge the persistent gap between classroom lea rining and clinical practice.

RECOMMENDATIONS

Based on the findings of this systematic review, the following recommendations are proposed to strengthen nursing education and improve the dev \square elopment of clinical c \square ompetencies through Simulation-Base \square d Learning (SBL). These are addressed to the key stake \square holders who pl \square ay essential roles in curricu \square lum design, implementation, and policy-making.

- 1. For Nurse Edu □ cators □ and Clinical Inst □ ructors: Nurse educ □ ator □ s should integrate simulation-based learning as a regular part of instruction to c □ ompl □ ement traditional clinical pra □ ctice. They should be trained in simulation facilitation, scenario creation, and structured debriefing to ensure effective learning □ outcomes. Regular workshops and certification in si □ mulation pedagogy a □ re encouraged to maint □ ain □ teaching competence and consistency in delivery.
- For Curriculum Developers and A \(\sigma \) cademic **Administrato**□**rs:** Curriculu□m planners an □d deans of □ co □ lleges of nursing should □ embed simulation experiences across all levels of the nursing curriculum. Learning objectives should clearly align with simulation outcomes, ensuring progressive skill development in cognitive, psychomotor, a□nd affective domains. Administrators should also allocate sufficient resources—equipment, laboratory space, technical support—to s□ustain simulation programs.
- 3. For Nurs □ing Students and Staff Nurses: Nursing students and practicing nurses are encouraged □ to actively participate in simulation activities as opportunities for exper □iential □ learning and self-asses □ sment. Engaging in structured debriefings and reflective exercises can strengthen clinical judgment, confidence, and teamwork □ skills that direct □ ly enhance patient ca □ re.
- 4. For Healthcare Institutions and Hospital Partners: Hospitals and healthcare agencies should collaborate with nursing schools to support simulation-based training as part of staff development and continuing education. Integrating simulation into orientation and competency v□alidatio□n programs can help maintain high standards of clinical performance□ and patient safe□ty.
- 5. For Polic□y Makers and Accredit□ing Bodies:
 Nursing boards, accrediting agencies, and
 government a□uthorities should recognize
 simulation-based education as a valid component of

- clinical training. $P \square ol \square icies$ should specify the acceptable ratio of simulation hours to clinical hours $a \square nd$ ensure equitable funding for simulation labo \square ratories, especially in public institutions. National guidelines shoul $\square d$ also promote standardized simul \square ation practic \square es based on international benchmark \square s such as INACSL st \square andards.
- 6. For Future Researchers: Researchers are encouraged to conduct longitudinal and multi-center studies to measure the long-term impact of sim □ulation on clinical competence and patient outcomes □. Studies exp □loring cost-effectiveness, technology adoption, and cultural adaptabili □ty of simul □ation can further strengthen the evidence base and inform national ed □ucation policies. □

This st \square udy's recommenda \square tions aim to ben \square efit nurse educators, curriculum develo \square p \square ers, nursing students, healthcare institutions, policymakers, and researchers. Implementing these recommendations will help ensure that simulation-b \square ased lea \square rning becomes a sustainab \square le and evidence-based strategy for enhancing nursing competencies, bridging the gap between theory \square and practice, and ultimately improving patient care quality and safety \square .

REFERENCES

- Alamrani, M. H., Alammar, K. A., Alqahtani, S. S., & Salem, O. A. (2018). Comparing the effects of simulation □-based and traditional teaching methods on nursing students' confidence and performance. Nursing Education Today, 69(2), 35–42. https://doi.org/10 □.xxxxx/xxxxx
- Azizi, M., et al. (2022). Comparison of simulation □ and traditional teaching on self-efficacy and clinical

- performance in nursing stude \Box nt \Box s. BMC Nursing, 21(3), 112–120.
- Ben Yahya, L., et al. (2024). Immersive s □ imulation in nursing and midwifery education: A systematic review.
 Journal of Ed □ ucational Evaluation for Health Professions, 21(19), 1–8.
- Cant, R. P., & Cooper, S. J. (2010). Simulation-□based learning in nurse education: Sy □stematic review. Journal of Advanced Nursing, 66(1), 3–15.
- International Nu rsing Asso ciation for Clinical Simulation and Learning (INACSL). (2020). Standards of best practice: SimulationSM. INACSL Standards Committee.
- Jarel□nape, A. A., & Sagiron, E. I. (2□023).
 Ev□aluation of the effectiveness of simulation-based tea□ching in nursing education: A systematic review.
 European J□ournal of Health Care, 5(2), 77-88.
- Koukourikos, K.,□ Tsalogli□dou, A., & Kourk□outa,
 L. (□2021). Simulation in clinical nursing education.
 Acta Informatica Medica, 29(1), 1□5–20.
- Mishra,□ R., Hemlata□, & T□rivedi, D. (□2023). Simulation-based learning in nursing curriculum: A systematic review and meta-analysis. Heliyon, 9(3),□ e137□45.
- National League for Nu□rsing (NLN). (2021). A vision for simulation in nu□rsing education: Advancing□ the science of nursing education. NLN Publications.
- Persico, L. (2018). Using simulation-based education to substitute traditional clinical rotations. JOJ Nurse Health Care, 9(3), 555762.
- Ruslan, M., & Saidi, R. (2019). Simulation and novice nurses □: A review. Journal of Nursin □g Practice, 3(2), 120–128.
- World Health Organization (□WHO). (2022). Global strategic directions for nursin □g and midwifery 2021– 2025. WHO Press.