

## Review: Utilization of Polyherbal Extracts in the Development of Microparticulate Systems for Drug Delivery

Rahmat Santoso<sup>1</sup>, Kintoko<sup>2\*</sup>, Nining Sugihartini<sup>2</sup>

<sup>1</sup>Faculty of Pharmacy, Bhakti Kencana University, Bandung, Indonesia

<sup>2</sup>Ahmad Dahlan University, Yogyakarta, Indonesia

DOI: <https://doi.org/10.36348/sjmmps.2026.v12i01.002>

| Received: 13.11.2025 | Accepted: 05.01.2026 | Published: 07.01.2026

\*Corresponding author: Kintoko  
Ahmad Dahlan University, Yogyakarta, Indonesia

### Abstract

**Introduction:** Polyherbal extracts contain various bioactive compounds that work synergistically to provide stronger therapeutic effects than single extracts. However, their use in the pharmaceutical field still faces challenges, especially related to low solubility, instability, and limited bioavailability. Microparticulate system technology presents an innovative solution that can increase the effectiveness of herbal drug delivery through physical protection of active compounds, controlled release, and increased absorption in the body. **Objective:** This review discusses research progress that integrates polyherbal extracts in microparticulate formulations, including polymer selection, manufacturing techniques, characterization, and pharmacological evaluation. **Methods:** A systematic literature review was conducted through searches in the last ten years [2015–2025] obtained through databases such as PubMed, ScienceDirect, and Google Scholar using keywords related to "polyherbal" and "microencapsulation" with a focus on articles on formulation studies and pharmacological evaluations in the last ten years. **Results:** The study showed that microparticulates were able to improve the entrapment efficiency, phytochemical stability, and therapeutic activity of polyherbal extracts, especially in oral and transdermal routes of administration. However several limitations such as the variability of natural product composition, potential interactions between compounds, and regulatory challenges still require further attention. The development of more advanced formulation technology as well as standardized toxicological and clinical studies are urgently needed to encourage the implementation of microparticulate herbal products on an industrial scale. **Conclusion:** Overall, polyherbal microparticulate systems have promising prospects as a safe, effective, and competitive strategy for modernizing herbal medicines.

**Keywords:** polyherbal, microparticulate, drug delivery system.

Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

### INTRODUCTION

Drug delivery technology continues to experience rapid progress in efforts to increase therapeutic effectiveness, reduce side effects, and extend the duration of drug action in the body [1]. One innovative approach currently receiving considerable attention is the use of microparticulate systems as drug carriers, for both synthetic molecules and natural products [2]. Microparticulate systems offer various advantages, such as the ability to control drug release, increase the stability of active ingredients, and enhance bioavailability [3].

On the other hand, the use of herbal-based treatments has increased significantly due to their perceived safety, low toxicity, and diverse bioactive compounds with high therapeutic potential [4]. Herbal

extracts often consist of a combination of phytochemicals that work synergistically [5]. This concept has given rise to the use of *polyherbal*, a combination of several plant extracts believed to provide more therapeutic effects than a single extract [6].

However the use of polyherbs as medicines presents challenges, particularly related to low solubility, instability under certain physiological conditions, and rapid degradation before reaching their target [7]. Therefore innovative formulations are needed to maximize the effectiveness of the active compounds they contain [8]. One promising technology to overcome these challenges is the microparticulate system [9].

Microparticles can be developed using a variety of polymers, both synthetic and natural, with controlled

**Citation:** Rahmat Santoso, Kintoko, Nining Sugihartini (2026). Review: Utilization of Polyherbal Extracts in the Development of Microparticulate Systems for Drug Delivery. *Saudi J Med Pharm Sci*, 12(1): 4-16.

release mechanisms and the ability to protect active compounds from the external environment [10]. The integration of microparticulate technology and polyherbal extracts can enhance stability and provide a release profile suitable for long-term therapy [11].

In addition to improving stability, microparticulate systems can also enhance the bioavailability of phytochemicals with low water solubility, allowing for better absorption in the gastrointestinal tract [12]. This advantage is particularly relevant for many active herbal compounds, such as flavonoids, alkaloids, and tannins, which commonly present biopharmaceutical challenges [13].

The use of polyherbs in microparticulate formulations also supports a holistic approach to therapy, where multiple mechanisms of action can occur simultaneously, such as anti-inflammatory, antioxidant, and immunomodulatory activities [14]. This combination can provide broader therapeutic potential, particularly for chronic and degenerative diseases [15].

Microparticulate systems can be developed for various drug delivery routes, such as oral, transdermal, and parenteral, expanding their application flexibility in the pharmaceutical and healthcare sectors [16]. This innovation opens up significant opportunities for the development of modern herbal medicines that can compete with conventional pharmaceuticals [17].

Overall the use of polyherbal extracts in microparticulate systems is a promising approach to improving the quality of medicinal plant-based therapies. With the advancement of research in this field, it is hoped that this technology will produce safe, effective, and high-quality formulations to support public health.

## METHOD

This review was conducted through a literature search based on scientific data published in national and international journals, a literature study covering scientific publications from 2015 to 2025. Articles were searched using databases such as PubMed, ScienceDirect, Scopus, and Google Scholar. 163 articles were obtained with keywords used included "*polyherbal*," "*herbal extract*," "*microparticle drug delivery*," "*microencapsulation of herbal extracts*," and

"*controlled-release herbal formulation*." Selected articles were systematically analyzed to identify trends in the development of polyherbal extract-based microparticulate systems, including formulation techniques, characterization, and evaluation of drug efficacy.

This literature review research approach includes identification, selection, and in-depth study of relevant scientific content. The analysis focused on findings related to the advantages and challenges of integrating microparticulate technology with polyherbal utilization. Key data such as polymer type, encapsulation method, particle size, entrapment efficiency, and drug release profile were summarized to provide a comprehensive overview of research progress in this field.

This review also includes a critical evaluation of existing research findings to assess the effectiveness of polyherbal microparticle formulations in improving bioavailability, phytochemical stability, and safety. Therefore, the results of this review are expected to serve as a reference for researchers regarding the direction of future herbal-based formulation development.

### Inclusion Criteria

Articles included in this review were English or Indonesian-language scientific publications discussing the use of polyherbal extracts in microparticulate systems, either in the form of formulation studies or pharmacological evaluations. Publications published within the last ten years were prioritized to ensure compliance with the latest technological developments. Articles presenting complete data on formulation methods, physicochemical characterization, or drug release testing were included in the analysis.

### Exclusion Criteria

Articles discussing only single herbal extracts without microparticulate formulations were excluded. Studies in the form of editorials, opinion pieces, conference abstracts without complete data, or reports that had not undergone peer review were also excluded. Furthermore, studies that did not provide relevant information regarding formulation parameters or evaluation of pharmacological activity in microparticulate systems were also eliminated from the analysis.

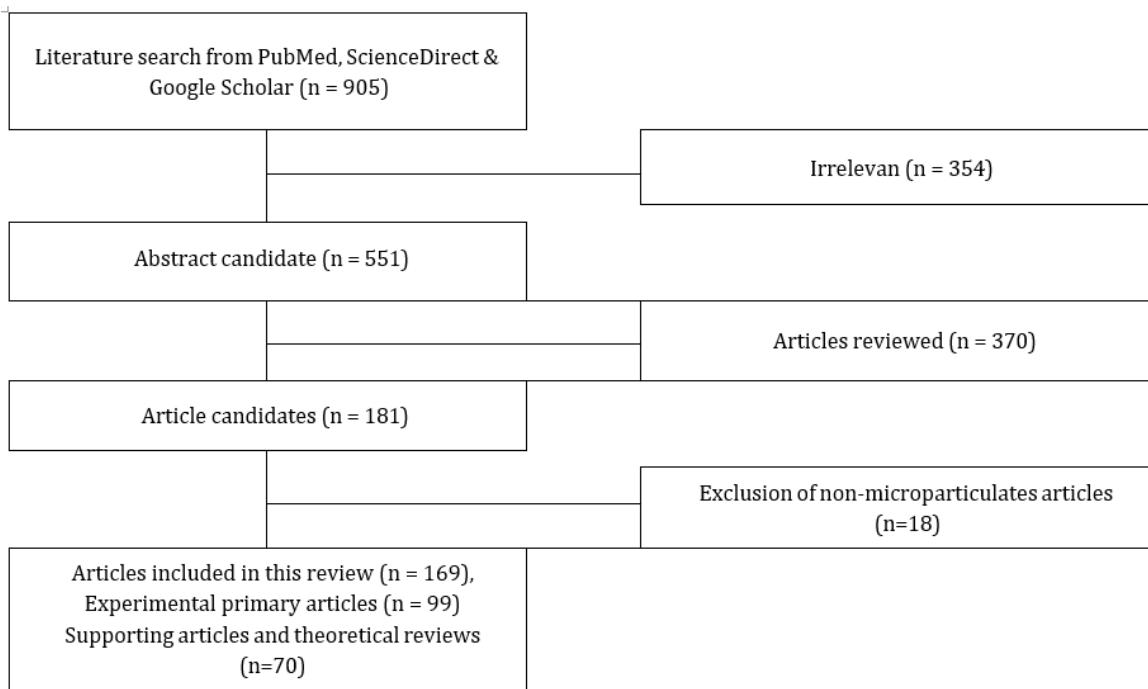



Figure 1: Literature Search Method

## RESULTS AND DISCUSSION

### 1. The Concept of Polyherbalism and the Advantages of Phytochemical Synergism

Polyherbal therapy is a combination of two or more plant extracts used for specific therapeutic purposes [18]. This concept is based on the principle of synergism, where each extract contains active compounds that complement each other, producing a stronger pharmacological effect [19]. Unlike single herbal monotherapy, polyherbal formulations allow for multi-target action, making them effective for complex diseases [20].

These synergistic interactions can enhance therapeutic potency by optimizing pharmacodynamics and pharmacokinetics [21]. For example, one compound can improve the solubility of another compound or slow its degradation [22]. Furthermore, the use of polyherbs can reduce the risk of drug resistance that typically occurs with single-ingredient therapies [23]. However, synergism also needs to be balanced with careful study [24]. Potential antagonism and negative interactions between compounds must be considered in formulations to ensure safe use [25].

### 2. Biopharmaceutical Problems in Polyherbs

One of the biggest challenges in utilizing polyherbals is the low solubility of phytochemical

compounds in body fluids, especially extracts rich in polyphenols and alkaloids [26]. This low solubility results in poor bioavailability, preventing full clinical benefits [27]. Furthermore, some compounds are readily degraded by digestive enzymes or certain pH conditions [28].

Herbs also have poor physicochemical stability during storage [29]. Oxidation, hydrolysis, and photodegradation reactions frequently occur, degrading the quality of the extract [30]. This complicates the development of herbal preparations that meet modern quality standards [31].

Through microparticulate technology, these limitations can be mitigated [32]. Physical protection of the active ingredient and control of the release profile can increase the compound's durability and allow it to reach its biological target [33].

### 3. Microparticulate Systems [Definition and Advantages in Drug Delivery]

Microparticles are particle units measuring 1-1000  $\mu\text{m}$  that function as drug carriers [34]. This technology can control the release of active compounds according to therapeutic needs, either rapidly or with prolonged action [35]. In the herbal context, microparticles offer increased stability and protection against compounds that are easily degraded [36].

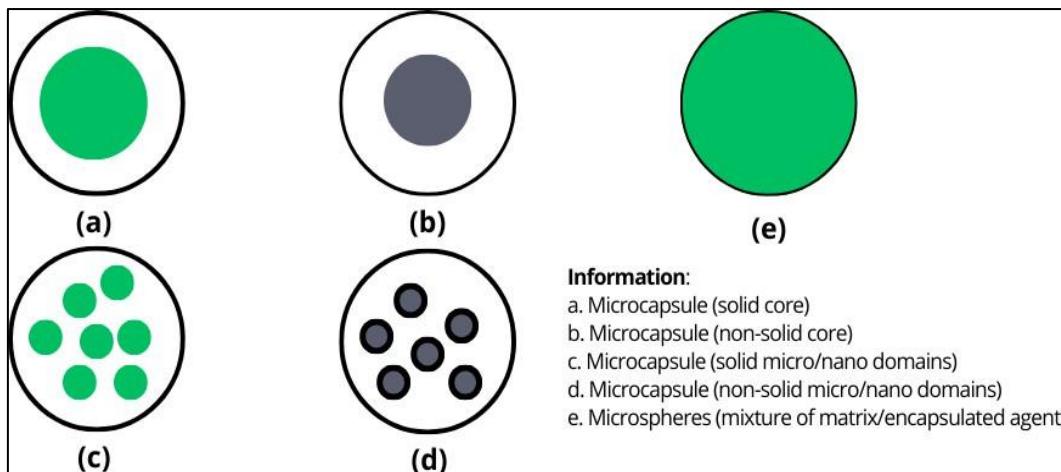



Figure 1: Type of Microparticles

Another advantage is the ability to increase the bioavailability of poorly soluble compounds [37]. This is achieved by increasing the particle surface area and adjusting the polymer matrix structure [38]. Furthermore, microparticles can be targeted to specific organs by adjusting their charge and size characteristics.

This technology is also flexible for various routes of administration, especially oral and transdermal, which are most suitable for herbal-based therapies [39].

#### 4. Polymers in Polyherbal Microparticulate Formulations

Polymer selection is a key factor in microparticle formulation [40]. Polymers can be derived from natural materials such as chitosan, alginate, and gelatin, or synthetic materials such as PLGA [*Poly[lactic-co-glycolic acid]*] [41]. Natural polymers are widely used because of their good biocompatibility and biodegradability, making them particularly suitable for herbal extracts [42].

Table 1: Comparison of Main Polymers in Polyherbal Microparticulate Formulations

| Polymer Categories  | Examples of Commonly Used Polymers            | Key Benefits [Relevant to polyherbal]                                                                            | Weaknesses/Challenges                                                   | Reference |
|---------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------|
| Natural/ Biopolymer | Chitosan                                      | Good biocompatibility and biodegradability. Polycationic, suitable for ionic gelation. May enhance absorption.   | Solubility is limited to neutral/alkaline pH.                           | [43–45]   |
|                     | Alginate                                      | Capable of forming gels through ionic interactions. Commonly used in <i>ionic gelation methods</i> .             | Stability in an acidic environment [stomach] can be an issue.           | [46–48]   |
|                     | Gelatin                                       | Natural polymer, fibrous protein, Biocompatible and digestible in the GIT.                                       | Requires <i>cross-linking</i> for stability; susceptible to hydrolysis. | [49–51]   |
| Synthetic           | PLGA [ <i>Poly(lactic-co-glycolic acid)</i> ] | Biodegradable, provides controlled and slow drug release [over months]. Ideal for long-term therapeutic targets. | Relatively higher costs. May produce acid degradation products.         | [52–54]   |

Polymers determine the drug release profile, entrapment efficiency, and final product stability [55]. Matrix or core *shell systems* are used depending on the characteristics of the extract to be encapsulated [56]. The polymer-to-extract ratio must be optimized to avoid chemical incompatibilities [57]. Characterization studies such as particle size, zeta potential, and morphology determine formulation quality and therapeutic efficacy [58].

#### 5. Method of Microparticulate Formation Using Polyherbal Extracts

Some commonly used methods include spray drying, emulsion crosslinking, solvent evaporation, and ionic gelation [59]. The choice of method depends on the extract's sensitivity to heat, solubility, and the drug release objectives [60]. For example, ionic gelation is suitable for natural polymers that cannot withstand high temperatures [61].

The correct method allows for optimal encapsulation and increased stability of polyherbal extracts [62]. Therefore, process parameters such as

stirring speed, nozzle size, and pH must be strictly controlled [63]. This process determines the trapping efficiency which will have a direct impact on dosage, effectiveness and production costs [64].

## 6. Entrapment Efficiency and Characterization of Polyherbal Microparticles

*Entrapment efficiency* is an important indicator in formulation [65]. A high value indicates the polymer's

ability to retain the active ingredient within the matrix, resulting in more controlled release [66]. Influencing factors include the polymer-to-extract ratio, formulation technique, and the chemical properties of the active compound [67].

**Table 2: Advantages and Selection of Polyherbal Microparticle Formulation Methods**

| Formation Method           | Basic Principles                                                                                                                                                            | Specific Advantages for Polyherbals                                                                                                                 | Limitations                                                                                                                                     | Key Characterization Indicators                                                                            | Reference |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|
| <i>Ionic Gelation</i>      | Ionic interactions between polymers [polyanions/ polycations] and <i>cross-linkers</i> .                                                                                    | Does not involve high heat, ideal for protecting temperature-sensitive herbal compounds.                                                            | Only suitable for ionically interacting polymers [e.g. chitosan-TPP].                                                                           | Particle Size [DLS], Entrapment Efficiency [EE], Zeta Potential                                            | [68,69]   |
| <i>Spray Drying</i>        | Rapid solvent evaporation under controlled temperature conditions [usually hot air].                                                                                        | Easy industrial scale, producing spherical and uniform particles.                                                                                   | Vulnerable to heat, can deactivate thermolabile active compounds.                                                                               | Morphology [SEM], EE, Moisture Content                                                                     | [70,71]   |
| <i>Solvent Evaporation</i> | Evaporation of organic solvents from emulsions.                                                                                                                             | Can be used to encapsulate lipophilic compounds which are commonly found in herbal extracts.                                                        | Requires organic solvents that must be completely removed.                                                                                      | Drug Release Profile, EE, FTIR [chemical interaction]                                                      | [72,73]   |
| Extrusion                  | Forces a wet mass [mixture of herbal extracts, fillers, and binders] through a perforated die or screen using mechanical pressure to produce dense, Cylindrical extrudates. | Enables high drug loading of multiple herbal extracts with diverse physical properties into a single, homogeneous matrix, ensuring dose uniformity. | Highly sensitive to moisture content; the high resinous or hygroscopic nature of herbal extracts can cause stickiness, leading to die clogging. | Extrudate diameter, texture consistency [tackiness], bulk density, and mass flow rate through the die.     | [74–76]   |
| Spheronization             | A process where cylindrical extrudates are cut and rounded on a rotating friction plate                                                                                     | Produces pellets with smooth surfaces ideal for functional coating to mask the bitter taste or pungent odors                                        | Requires extensive optimization of rotation speed and time due to the chemical variability                                                      | Degree of sphericity [aspect ratio], particle size distribution, friability, and surface morphology [SEM]. | [77–79]   |

After the formulation is developed, further characterization, such as FTIR, SEM, and DLS tests, is performed to assess stability, morphology, and particle size distribution [80]. The drug release profile is also

tested in a simulated gastrointestinal environment [81]. Characterization data determines the potential clinical efficacy and safety of the product in future applications [82].

**Table 3: Comparing Polyherbal Microparticle Fabrication Techniques**

| Technique                       | Main Advantages                                                                                                                       | Application Notes                                                                                                      | Reference    |
|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------|
| <i>Microfluidics</i>            | High precision control over particle size, high and accurate encapsulation efficiency.                                                | Lab scale; can be <i>parallelized</i> for potential large-scale production, ideal for formula screening.               | [83-85]      |
| <i>Spray Drying</i>             | Very fast production process, suitable for heat-sensitive materials due to short exposure to high temperatures.                       | Industrial scale [mass production]; yields particles with good uniformity.                                             | [80,86,87]   |
| <i>Emulsion [Single/Double]</i> | Highly versatile, suitable for encapsulating both hydrophilic and lipophilic active ingredients; easily adaptable.                    | Formulation parameters [e.g., surfactant type] greatly influence encapsulation efficiency and stability.               | [88][89][90] |
| <i>Electrospraying</i>          | Produces very small particle sizes [nanoparticles], narrow size distribution, and capability to create <i>multi-layer</i> structures. | Highly suitable for polyherbal preparations; allows excellent control over particle morphology and internal structure. | [83][91][92] |
| <i>Coacervation</i>             | Highly effective and suitable for use with natural polymers, such as biocompatible alginate and gelatin.                              | Particle size is primarily controlled by adjusting the stirring speed and polymer concentration.                       | [93][94][95] |

The optimal ratio of polyherbal components must be carefully determined through a mixture design process and statistical analysis based on the targeted therapeutic activity. Modern microparticle fabrication can utilize various techniques, including Microfluidics, Spray Drying, Emulsion, Electrospraying, or Coacervation [80]. The choice of technique must be tailored to the physicochemical characteristics of the raw materials [polyherbs] and the final goal of the pharmaceutical preparation. These techniques collectively result in microparticles with uniform size, ensuring high encapsulation efficiency, and providing the controlled release profile that is crucial for product efficacy [82].

## 7. Controlled Release and Bioavailability in Microparticulate Systems

Microparticles serve as highly effective drug delivery systems due to their inherent ability to achieve controlled and sustained release of the active ingredients [96]. The mechanism of this release typically occurs through the diffusion of the active agent out of the polymeric matrix, the gradual erosion of the matrix itself, or a synergistic combination of both processes [97]. The capacity to precisely control this release profile is tremendously beneficial, especially for managing chronic diseases or conditions that demand consistent, long-term therapeutic intervention [98]. In the context of polyherbal formulations, controlled release plays a vital role in ensuring that the concentrations of the various active compounds are maintained stably within the therapeutic window [99]. This stable concentration minimizes the risk of toxicity while simultaneously maximizing the overall efficacy of the treatment over the desired duration of therapy [100].

In addition to managing the timing and rate of release, an optimal release profile from microparticles significantly contributes to the enhancement of the bioavailability of the herbal compounds [101]. This

improvement in bioavailability is achieved through several protective and residence-time-extending mechanisms [102]. One key function of microparticles is their capacity to extend the residence time of the drug within the digestive tract [103]. This prolonged time provides an extended window for the active compounds to be effectively absorbed across the intestinal wall [104].

Furthermore the microparticle matrix acts as a robust protective fortress, shielding the active components from rapid degradation caused by the highly acidic gastric environment or the destructive activity of digestive enzymes [105]. This protection ensures that the majority of the active ingredients can reach their primary site of absorption, the small intestine, intact and ready to be taken up [106]. The net result is a much more efficient and optimal absorption of the active ingredients compared to free herbal extracts that are susceptible to degradation [107]. Therefore this enhanced bioavailability directly correlates with a greater therapeutic potential of the formulated herbal preparation [108].

In the endeavor to predict the actual clinical performance of microparticle-based herbal preparations, *in vitro* release testing holds a very critical and indispensable role [109]. This testing is conducted under laboratory conditions that closely replicate the *in vivo* environment, such as pH and enzyme presence, to generate an accurate release profile [110]. The data obtained from these *in vitro* tests serves as a powerful indicator for predicting how the formulation is likely to behave after administration to a patient [111]. The concordance between the *in vitro* results and the *in vivo* performance is essential for the ultimate success and reliability of the developed phytopharmaceutical product [112].

Thus careful release testing and well-engineered microparticle formulation are crucial steps in creating effective and safe polyherbal products [113]. Researchers utilize the release data to refine the polymer composition and particle size, ensuring that the release profile meets the specific therapeutic needs [98]. This continuous optimization guarantees that the microparticulate system can consistently deliver the full benefits of the herbal contents to their biological targets [114]. Consequently microparticle technology represents a significant advancement in enhancing the efficacy and reliability of modern herbal medicines [115].

## 8. Pharmacological Activity of Polyherbs in Microparticles

The incorporation of polyherbal extracts into microparticulate systems has been consistently reported to result in a significant enhancement of their pharmacological activity compared to the use of free extracts [116]. This boost in effectiveness is a direct result of the bioactive protection and improved targeting offered by the microparticle formulation [117]. The bioactivity of the compounds, such as polyphenols and alkaloids, is maintained at a maximum due to protection against the harsh environmental conditions within the body [118]. Consequently, the bioactive compounds are able to act with much greater efficiency on their biological targets upon controlled release [33].

This increased efficiency is evident across a wide spectrum of therapeutic activities that have been extensively studied and documented [119]. Among the most frequently studied activities are the potent anti-inflammatory properties, where the active compounds can modulate inflammatory pathways more effectively [120]. Furthermore, the antioxidant properties of the polyherbs are potentiated, allowing for better free radical scavenging and a reduction in overall cellular oxidative stress [121]. Studies have also highlighted enhanced antimicrobial activities, offering great potential for tackling antibiotic resistance through diverse mechanisms of action [122].

The anticancer activity of polyherbs within a microparticle matrix has shown promising results in preclinical research [123]. The targeted drug delivery afforded by microparticles can improve compound accumulation at the tumor site [124]. This enhanced targeting allows for higher local cytotoxic concentrations to be achieved at the cancer cells [125]. This amplified activity, spanning anti-inflammatory, antioxidant, and cytotoxic effects, underscores the immense potential of microparticulate systems as comprehensive therapeutic agents [126].

These advantages serve as a compelling rationale for driving forward the development of microparticulate formulations within the context of modern herbal-based therapies [127]. This approach inherently supports the concept of holistic healing

espoused by traditional medicine philosophy [128]. This holistic healing concept is achieved through the multi-target action inherent in polyherbs, where various compounds work synergistically on multiple disease pathways [129]. The enhanced system offers a more comprehensive and balanced solution to complex health issues than single-compound drugs [130].

While the therapeutic potential offered is vast, it is absolutely essential to stress that thorough and rigorous toxicology testing must be a prerequisite before long-term use can be recommended [131]. Long-term safety is a paramount concern, particularly given the chronic nature of many diseases targeted by these herbal therapies [132]. This testing must carefully evaluate the potential side effects of both the herbal ingredients and the polymeric materials themselves upon repeated administration [133].

## 9. Route of Drug Administration in Polyherbal Microparticles

The oral route remains the most common and preferred pathway for microparticle-based polyherbal formulations due to its unmatched convenience and wide acceptance by patients [134]. The compatibility of this route with the tradition of herbal medicine usage is also a significant factor in its popularity [135]. Microparticles are meticulously engineered to survive the harsh gastric environment, which would otherwise rapidly deactivate sensitive herbal compounds [136]. This protection ensures that the targeted release of the active compounds can occur in the small intestine [137].

The small intestine is the ideal location for release as it offers an exceptionally large surface area and more neutral pH conditions [138]. These conditions are significantly more conducive for the effective absorption of most herbal compounds into the bloodstream [139]. By utilizing the microparticle shield, the systemic bioavailability of the polyherbs can be maximized, which is a key objective of oral drug delivery systems [140]. Success in oral delivery is crucial for systemic therapies of internal diseases [141].

Aside from the oral route, topical or transdermal application represents a valuable and relevant pathway for microparticles carrying polyherbs [142]. In the context of skin application, microparticles excel at enhancing the penetration of active compounds across the dermal layers [143]. This improved penetration allows for more effective treatment of dermatological conditions or localized pain [144]. Furthermore, topical formulations can be designed to prolong the local effects of the herbal extract, minimizing the need for repeated applications [145].

The parenteral route, while less common and more technically challenging, is also a feasible option for microparticulate polyherbal preparations under specific circumstances [146]. However, this route demands

substantially higher and stricter requirements regarding absolute sterility standards [147]. Additionally, the characterization of particle size and homogeneity becomes exceptionally critical to avoid the risk of vascular occlusion [148]. Therefore, the parenteral system is only chosen when other routes are inadequate or when rapid action is required in acute situations [149].

The decision on the most appropriate route of drug administration must always be the outcome of careful consideration of multiple determining factors [150]. These factors include the specific therapeutic target [local vs. systemic], the unique characteristics of the disease being treated, and most importantly, the effectiveness and reliability of drug absorption via the

chosen path [151]. This diversity in administration route options allows for a significant expansion of the opportunities for herbal polysystem-based therapy to address a much wider spectrum of medical conditions [152].

## 10. Challenges and Limitations in the Development of Polyherbal Microparticles

Despite its many advantages, the development of polyherbal microparticles still faces challenges [153]. Variability in active ingredient composition between batches can complicate standardization [154]. Interactions between compounds can also lead to chemical instability or reduced entrapment efficiency [155].

**Table 4: Main Challenges and Future Prospects for the Development of Polyherbal Microparticles**

| Area / Issue                   | Current Challenges and Limitations                                                                                                                                                                | Prospects and Directions for Future Research                                                                                                          | Reference |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Standardization & Quality      | Variability in the composition of active ingredients between <i> batches</i> of polyherbal extracts. Inter-compound interactions that may cause antagonism or decreased stability.                | Application of Omics and In Silico technologies for accurate identification and quantification of phytochemicals.                                     | [156,157] |
| Biopharmaceuticals             | Bioavailability is low in many phytochemicals due to low solubility and rapid degradation.                                                                                                        | Development of <i>targeted drug delivery</i> to specific organs [e.g., the brain for Alzheimer's]. Utilization of predictive drug release models.     | [158,159] |
| Commercialization & Regulation | The production costs of microparticle technology are relatively high [especially <i>spray drying</i> ]. Strict regulations are needed to ensure the safety and quality of modern herbal products. | Collaboration between academia, industry, and regulators to standardize and accelerate implementation. Standardized toxicology and clinical research. | [160,161] |

Production costs and the required technological equipment are still relatively high for small- and medium-scale herbal industries [162]. Furthermore, the need for strict regulations regarding safety and quality poses a challenge to commercialization [163]. Therefore, standardized preclinical and clinical studies are essential to support broader applications [164].

## 11. Prospects and Directions for Future Research

The development of polyherbal microparticulates holds great promise for developing modern herbal medicines with therapeutic qualities comparable to synthetic pharmaceuticals [165]. Combining traditional approaches with advanced materials technology can accelerate innovation in the phytopharmaceutical sector [166]. Future research is directed at the use of safer, more environmentally friendly polymers that are responsive to biological stimuli [167].

Furthermore, the application of *in silico*, omics, and predictive drug release models can improve research efficiency [168]. The development of targeted drug delivery also opens up opportunities for herbal-based therapies for degenerative diseases and cancer [169]. Collaboration between academia, industry, and

regulators is essential to achieve broader and standardized use of polyherbs.

## CONCLUSION

The use of polyherbal extracts in the development of microparticulate systems offers an innovative solution to overcome various limitations of natural biopharmaceuticals, including low solubility, poor stability, and low bioavailability of active compounds. Microparticulate technology can provide protection against degradation, regulate drug release profiles, and enhance absorption, thus achieving optimal therapeutic efficacy. Phytochemical synergism in polyherbs also provides the advantage of multi-target pharmacological activity suitable for complex disease therapy needs.

However, challenges related to extract standardization, production costs, and strict regulatory requirements remain obstacles to the development of microparticulate herbal products for industrial scale. Therefore, more comprehensive further research is needed, including toxicity testing, clinical validation, and the use of the latest formulation technologies to ensure their safety and effectiveness. With the support of

ongoing research and cross-sector collaboration, polyherbal microparticulate systems have great potential for implementation as a modern form of herbal medicine that offers high quality and high competitiveness.

### Acknowledgements

We express our deepest gratitude for the invaluable financial support provided to this research. Our special appreciation and gratitude go to Badan Pengelola Dana Pendidikan [BPI] under the auspices of Lembaga Pengelola Dana Pendidikan [LPDP], Universitas Bhakti Kencana and the Direktorat Riset dan Pengabdian kepada Masyarakat [DRPM], whose financial contributions have made this research project possible.

### BIBLIOGRAPHY

1. Nammas M. The impact of drug delivery systems on pharmacokinetics and drug-drug interactions in neuropsychiatric treatment. *Cureus*. 2025;17[6]. DOI: 10.7759/cureus.17.6
2. Kállai-Szabó N, *et al.*, Microparticles and multi-unit systems for advanced drug delivery. *Eur J Pharm Sci.* 2024; 194:106704. DOI: 10.1016/j.ejps.2024.106704
3. Rafiee MH, Rasool BKA. An overview of microparticulate drug delivery system and its extensive therapeutic applications in diabetes. *Adv Pharm Bull.* 2021;12[4]:730. DOI: 10.34172/apb.2022.073
4. Ahirwar RK, *et al.*, Understanding cytotoxic effects of traditional herbal remedies: A comprehensive review. *Phytomedicine Plus.* 2025;100931. DOI: 10.1016/j.phyplu.2024.100931
5. Parveen A, *et al.*, Modulating effects of the synergistic combination of extracts of herbal drugs on cyclophosphamide-induced immunosuppressed mice. *Saudi J Biol Sci.* 2021;28[11]:6178–90. DOI: 10.1016/j.sjbs.2021.06.074
6. Sharma S, *et al.*, Ameliorative effect of a standardized polyherbal combination in methotrexate-induced nephrotoxicity in the rat. *Pharm Biol.* 2020;58[1]:184–99. DOI: 10.1080/13880209.2020.1717548
7. Awlqadr FH, *et al.*, Nanotechnology-Based Herbal Medicine: Preparation, Synthesis, and Applications in Food and Medicine. *J Agric Food Res.* 2025;101661. DOI: 10.1016/j.jafr.2024.101661
8. Kouassi M-C, *et al.*, Multifunctional active ingredient-based delivery systems for skincare formulations: A review. *Colloids Surfaces B Biointerfaces.* 2022;217:112676. DOI: 10.1016/j.colsurfb.2022.112676
9. Singh S, *et al.*, Advancements in Controlled-Release Drug Delivery Systems: A Focus on Polymeric Microparticles. *Pexacy Int J Pharm Sci.* 2023;2[5]:34–44. DOI: 10.5281/zenodo.7941235
10. Łętocha A, *et al.*, Preparation and characteristics of alginate microparticles for food, pharmaceutical and cosmetic applications. *Polymers* [Basel]. 2022;14[18]:3834. DOI: 10.3390/polym14183834
11. Ge T-T, *et al.*, Research Progress of Sustained-Release Microsphere Technology in Drug Delivery. *Eur J Med Chem Reports.* 2025;100299. DOI: 10.1016/j.ejmcr.2024.100299
12. Goktas Z, *et al.*, Recent advances in nanoencapsulation of phytochemicals to combat obesity and its comorbidities. *J Agric Food Chem.* 2020;68[31]:8119–31. DOI: 10.1021/acs.jafc.0c02539
13. Ullah A, *et al.*, Important flavonoids and their role as a therapeutic agent. *Molecules.* 2020;25[22]:5243. DOI: 10.3390/molecules25225243
14. Chumpolphant S, *et al.*, Polyherbal formulation exerts wound healing, anti-inflammatory, angiogenic and antimicrobial properties. *Saudi J Biol Sci.* 2022;29[7]:103330. DOI: 10.1016/j.sjbs.2022.04.004
15. Kamarehei F. The effects of combination therapy by solid lipid nanoparticle and dental stem cells on different degenerative diseases. *Am J Transl Res.* 2022;14[5]:3327. DOI: 10.62347/MSRN1298
16. Liu S, *et al.*, Advances in Transdermal Drug Delivery Systems and Clinical Applications in Inflammatory Skin Diseases. *Pharmaceutics.* 2025;17[6]:746. DOI: 10.3390/pharmaceutics17060746
17. Tegtmeier M, *et al.*, Green manufacturing for herbal remedies with advanced pharmaceutical technology. *Pharmaceutics.* 2023;15[1]:188. DOI: 10.3390/pharmaceutics15010188
18. Mussarat S, *et al.*, Antimicrobial screening of polyherbal formulations traditionally used against gastrointestinal diseases. *Saudi J Biol Sci.* 2021;28[12]:6829–43. DOI: 10.1016/j.sjbs.2021.07.054
19. Chaachouay N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. *Drugs Drug Candidates.* 2025;4[1]:4. DOI: 10.3390/ddc4010004
20. Mohammadzadeh M, *et al.*, Effectiveness of Polyherbal Formulation on Obesity: A Review of Preclinical and Clinical Trial Studies. *Obes Med.* 2025;100617. DOI: 10.1016/j.obmed.2024.100617
21. Calzetta L, *et al.*, Drug-drug interactions and synergy: from pharmacological models to clinical application. *Pharmacol Rev.* 2024;76[6]:1159–220. DOI: 10.1124/pharmrev.123.000961
22. Das B, *et al.*, Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. *Bioorg Med Chem.* 2022;56:116614. DOI: 10.1016/j.bmc.2021.116614
23. Egbuna C, *et al.*, Anti-proliferative effects of a polyherbal formulation on HL-60, HCT-116, and HeLa cell lines. *Front Chem.* 2025;13:1487887. DOI: 10.3389/fchem.2025.1487887
24. Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1+1 does not equal 2. *Nat Prod Rep.* 2019;36[6]:869–88. DOI:

10.1039/C9NP00012H

25. Roque-Borda CA, *et al*., Peptide-Based Strategies Against *Mycobacterium tuberculosis*. *Pharmaceuticals*. 2025;18[10]:1440. DOI: 10.3390/ph18101440

26. Kumar A, *et al*., Major phytochemicals: recent advances in health benefits and extraction method. *Molecules*. 2023;28[2]:887. DOI: 10.3390/molecules28020887

27. Zhuo Y, *et al*., Enhancing drug solubility, bioavailability, and targeted therapeutic applications through magnetic nanoparticles. *Molecules*. 2024;29[20]:4854. DOI: 10.3390/molecules29204854

28. Jiang Z, *et al*., Enzymatic regulation of the gut microbiota: mechanisms and implications for host health. *Biomolecules*. 2024;14[12]:1638. DOI: 10.3390/biom14121638

29. Budiman A, *et al*., Advancing the Physicochemical Properties and Therapeutic Potential of Plant Extracts Through Amorphous Solid Dispersion Systems. *Polymers* [Basel]. 2024;16[24]:3489. DOI: 10.3390/polym16243489

30. Comanescu C, Racovita RC. An Overview of Degradation Strategies for Amitriptyline. *Int J Mol Sci*. 2024;25[7]:3822. DOI: 10.3390/ijms25073822

31. Alum EU, *et al*., Metabolomics-driven standardization of herbal medicine. *Nat Prod Commun*. 2025;20[8]. DOI: 10.1177/1934578X251367650

32. da Silva RYP, *et al*., Microparticles in the Development and Improvement of Pharmaceutical Formulations. *Int J Mol Sci*. 2023;24[6]. DOI: 10.3390/ijms24065634

33. Rezagholizade-Shirvan A, *et al*., Bioactive compound encapsulation: Characteristics, applications in food systems. *Food Chem X*. 2024;24:101953. DOI: 10.1016/j.fochx.2024.101953

34. Lee YJ, Kim MS. Advances in drug-loaded microspheres for targeted, controlled, and sustained drug delivery. *Biomed Pharmacother*. 2025;189:118244. DOI: 10.1016/j.biopha.2024.118244

35. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. *Molecules*. 2021;26[19]:5905. DOI: 10.3390/molecules26195905

36. da Silva Anthero AG, *et al*., Microencapsulation of Capsicum and its derivatives compounds by spray-drying. *Heliyon*. 2025;11[12]. DOI: 10.1016/j.heliyon.2024.e41528

37. Kumari L, *et al*., Advancement in solubilization approaches: A step towards bioavailability enhancement of poorly soluble drugs. *Life*. 2023;13[5]:1099. DOI: 10.3390/life13051099

38. Shalygina TA, *et al*., Influence of the filler particles' surface morphology on the polyurethane matrix's structure. *Polymers* [Basel]. 2021;13[22]:3864. DOI: 10.3390/polym13223864

39. Hu Y, *et al*., Microparticles: biogenesis, characteristics and intervention therapy for cancers. *J Nanobiotechnology*. 2022;20[1]:189. DOI: 10.1186/s12951-022-01398-w

40. Bao Z, *et al*., Polymer microparticles in an evolving drug delivery landscape: challenges and the role of machine learning. *Int J Pharm*. 2025;125906. DOI: 10.1016/j.ijpharm.2024.125906

41. Geszke-Moritz M, Moritz M. Biodegradable polymeric nanoparticle-based drug delivery systems. *Polymers* [Basel]. 2024;16[17]:2536. DOI: 10.3390/polym16172536

42. Guduru AT, *et al*., Plant-based biodegradable and biocompatible polymers for tissue engineering applications. *Carbohydr Res*. 2025;109699. DOI: 10.1016/j.carres.2024.109699

43. Gonciarz W, *et al*., Chitosan-based formulations for therapeutic applications. *J Biomed Sci*. 2025;32[1]:62. DOI: 10.1186/s12929-024-01051-x

44. Yadav M, *et al*., Advances and challenges in the use of chitosan and its derivatives in biomedical fields. *Carbohydr Polym Technol Appl*. 2023;5:100323. DOI: 10.1016/j.carpta.2023.100323

45. Stefanache A, *et al*., Chitosan Nanoparticle-Based Drug Delivery Systems. *Polymers* [Basel]. 2025;17[11]:1453. DOI: 10.3390/polym17111453

46. Weng Y, *et al*., Alginate-based materials for enzyme encapsulation. *Adv Colloid Interface Sci*. 2023;318:102957. DOI: 10.1016/j.cis.2023.102957

47. Ciarleglio G, *et al*., Synthesis and characterization of alginate gel beads as carriers of curcumin. *Gels*. 2023;9[9]:714. DOI: 10.3390/gels9090714

48. Martău GA, *et al*., The use of chitosan, alginate, and pectin in the biomedical and food sector. *Polymers* [Basel]. 2019;11[11]:1837. DOI: 10.3390/polym11111837

49. Xu Y, *et al*., Functionalized Gelatin-Based Materials: Advancing Bio-Fabrication Applications. *Compr Rev Food Sci Food Saf*. 2025;24[6]. DOI: 10.1111/1541-4337.70306

50. Yang G, *et al*., Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds. *Sci Rep*. 2018;8[1]:1616. DOI: 10.1038/s41598-018-20006-y

51. Ata O, *et al*., Advances in Collagen-/Gelatin-Based Hydrogels: Rheological Properties and Applications. *Macromol*. 2025;5[4]:55. DOI: 10.3390/macromol5040004

52. Sun R, *et al*., The drug release of PLGA-based nanoparticles and their application. *Heliyon*. 2024;10[18]. DOI: 10.1016/j.heliyon.2024.e37651

53. Yang J, *et al*., Recent applications of PLGA in drug delivery systems. *Polymers* [Basel]. 2024;16[18]:2606. DOI: 10.3390/polym16182606

54. Su Y, *et al*., PLGA-based biodegradable microspheres in drug delivery. *Drug Deliv*. 2021;28[1]:1397–418. DOI: 10.1080/10717544.2021.1938756

55. Fernandes AI. Polymers enhancing bioavailability in drug delivery. *Pharmaceutics*. 2023;15:2604.

DOI: 10.3390/pharmaceutics15112604

56. Elkalla E, *et al*., Core-shell micro/nanocapsules: from encapsulation to applications. *J Microencapsul*. 2023;40[3]:125–56. DOI: 10.1080/02652048.2023.2185246

57. Tyagi A, *et al*., A comprehensive review of polymers and their derivatives for enhanced oil recovery. *J Environ Chem Eng*. 2025;13[5]:117601. DOI: 10.1016/j.jece.2024.117601

58. Serrano-Lotina A, *et al*., Zeta potential as a tool for functional materials development. *Catal Today*. 2023;423:113862. DOI: 10.1016/j.cattod.2022.06.015

59. Vishnumurthy RH, *et al*., Microencapsulation of celecoxib using various methods and polymers. *Int J Health Sci*. 2022;6[S6]:6647–62. DOI: 10.53730/ijhs.v6nS6.10486

60. Alara OR, *et al*., Extraction of phenolic compounds: A review. *Curr Res food Sci*. 2021;4:200–14. DOI: 10.1016/j.crfcs.2021.03.011

61. Loganathan P, *et al*., Effect of Temperature, Salinity, and pH on Nanocellulose-Improved Polymer Gel. *Gels*. 2025;11[3]:151. DOI: 10.3390/gels11030151

62. Reddy CK, *et al*., Encapsulation techniques for plant extracts. Elsevier; 2022. DOI: 10.1016/B978-0-12-822475-5.00003-4

63. Manstein F, *et al*., Process control and in silico modeling strategies for stem cells. *STAR Protoc*. 2021;2[4]:100988. DOI: 10.1016/j.xpro.2021.100988

64. Gil-Martín E, *et al*., Influence of the extraction method on the recovery of phenolic compounds. *Food Chem*. 2022;378:131918. DOI: 10.1016/j.foodchem.2021.131918

65. Baltz N, Scherließ R. Entrapment efficiency methodology for lipid nanoparticles. *OpenNano*. 2025;100251. DOI: 10.1016/j.onano.2024.100251

66. Herdiana Y, *et al*., Drug release study of the chitosan-based nanoparticles. *Heliyon*. 2022;8[1]. DOI: 10.1016/j.heliyon.2022.e08674

67. Rojas K, *et al*., Use of encapsulating polymers of active compounds in the pharmaceutical and food industry. *Food Chem Adv*. 2024;4:100619. DOI: 10.1016/j.focha.2024.100619

68. Rajabimashhadi Z, *et al*., Development and Characterization of Chitosan Microparticles via Ionic Gelation. *Polymers* [Basel]. 2025;17[19]:2603. DOI: 10.3390/polym17192603

69. Gutiérrez-Ruiz SC, *et al*., Optimize the parameters for the synthesis by the ionic gelation technique. *J Biol Eng*. 2024;18[1]:12. DOI: 10.1186/s13036-024-00407-3

70. Malakouti S, *et al*., Spray-drying microencapsulation of tomato pomace extract. *J Agric Food Res*. 2025;102392. DOI: 10.1016/j.jafr.2024.102392

71. Mardani M, *et al*., Microencapsulation of natural products using spray drying. *J Microencapsul*. 2024;41[7]:649–78. DOI: 10.1080/02652048.2024.2372541

72. Nataren-Rodríguez F, *et al*., Spray-Dried Polymeric Microspheres for Lipophilic Drugs. *Pharmaceutics*. 2025;18[7]:1020. DOI: 10.3390/ph18071020

73. Queffelec J, *et al*., Advances in obtaining ready to use extracts with natural solvents. *Sustain Chem Pharm*. 2024;38:101478. DOI: 10.1016/j.scp.2024.101478

74. Muley S, *et al*., Extrusion–spheronization a promising pelletization technique. *Asian J Pharm Sci*. 2016;11[6]:684–99. DOI: 10.1016/j.ajps.2016.03.001

75. Tan DK, *et al*., Hot-melt extrusion coupled with FDM 3D printing. *Pharmaceutics*. 2018;10[4]:203. DOI: 10.3390/pharmaceutics10040203

76. Shahbazi M, Jäger H. Current status in the utilization of biobased polymers for 3D printing. *ACS Appl Bio Mater*. 2020;4[1]:325–69. DOI: 10.1021/acsabm.0c01169

77. Anabousi S, *et al*., Fast disintegrating pellets: Formulation and evaluation. *F1000Research*. 2025;14:711. DOI: 10.12688/f1000research.149842.1

78. Paktinat P, *et al*., Levetiracetam Coated Pellets using Extrusion-Spheronization. *Iran J Pharm Sci*. 2025;21[1]. DOI: 10.22037/ijps.v21i1.45123

79. Abbaspour M, *et al*., Lipid-based sustained release pellets by wet extrusion-spheronization. *BioImpacts*. 2024;15. DOI: 10.34172/bi.2024.29812

80. Dadashi H, *et al*., A rapid protocol for synthesis of chitosan nanoparticles. *Heliyon*. 2024;10[11]. DOI: 10.1016/j.heliyon.2024.e31522

81. Aghelinejad A, Ebrahimi NG. Delivery mechanism of curcumin loaded in a zein-chitosan-alginate system. *Heliyon*. 2024;10[13]. DOI: 10.1016/j.heliyon.2024.e33441

82. Costa V, *et al*., The relevance of the real-world evidence in decision making. *Front public Heal*. 2025;13. DOI: 10.3389/fpubh.2025.1512429

83. Cam ME, *et al*., Electrosprayed microparticles: a novel drug delivery method. *Expert Opin Drug Deliv*. 2019;16[9]:895–901. DOI: 10.1080/17425247.2019.1645119

84. Fergola A, *et al*., Biomaterials in droplet-based microfluidics. *Mater Today Adv*. 2025;28:100667. DOI: 10.1016/j.mtadv.2024.100667

85. Qi X, Hu G. Harnessing Microfluidics for the Synthesis of Advanced Materials. *Micromachines*. 2025;16[10]:1106. DOI: 10.3390/mi16101106

86. Dantas A, *et al*., Innovations in spray drying technology for liquid food processing. *Appl Food Res*. 2024;4[1]:100382. DOI: 10.1016/j.afres.2023.100382

87. Marante T, *et al*., Spray-drying of protein-loaded polymeric nanoparticles. *Pharmaceutics*. 2020;12[11]:1032. DOI: 10.3390/pharmaceutics12111032

88. Lagreca E, *et al*., Recent advances in the

formulation of PLGA microparticles. *Prog Biomater.* 2020;9[4]:153–74. DOI: 10.1007/s40204-020-00144-w

89. Bufalini C, Campardelli R. Versatile Emulsion-Based Encapsulation System Production Processes. *Processes.* 2025;13[5]:1409. DOI: 10.3390/pr13051409

90. Zhang H, *et al.*, Microencapsulation technique for aqueous phases using inverse emulsion. *Colloids Surfaces A.* 2022;634. DOI: 10.1016/j.colsurfa.2021.127865

91. Patel PR, *et al.*, Review on electrospray nanoparticles for drug delivery. *Polym Adv Technol.* 2024;35[7]. DOI: 10.1002/pat.6507

92. Khademlqorani S, *et al.*, Electrosprayed nanoparticles as targeted drug delivery systems. *J Appl Sci Nanotechnol.* 2022;2[2]:1–7. DOI: 10.53293/jasn.2022.4435.1118

93. Lukova P, *et al.*, Starch, cellulose, and their derivatives in microparticle systems. *Polymers [Basel].* 2023;15[17]:3615. DOI: 10.3390/polym15173615

94. Alrosan M, *et al.*, Complex Coacervation of Plant-Based Proteins and Polysaccharides. *Food Eng Rev.* 2025. DOI: 10.1007/s12393-024-09388-x

95. Xu M, *et al.*, Complex coacervation of soy protein isolate and sodium alginate. *Food Sci Nutr.* 2022;10[12]:4178–88. DOI: 10.1002/fsn3.3011

96. Çelik S, *et al.*, High throughput microparticle production using microfabricated nozzle array. *RSC Adv.* 2025;15[9]:6823–32. DOI: 10.1039/D4RA10452C

97. Zanino A, *et al.*, Polymers as controlled delivery systems in agriculture. *Eur Polym J.* 2024;203:112665. DOI: 10.1016/j.eurpolymj.2023.112665

98. Trucillo P. Biomaterials for drug delivery and human applications. *Materials [Basel].* 2024;17[2]:456. DOI: 10.3390/ma17020456

99. Wardani TK, *et al.*, Crude Drug Standardization of Antioxidant Polyherbal Formulation. *J Jamu Indones.* 2025;10[2]:93–101. DOI: 10.29244/jji.v10i2.335

100. Ahmad MZ, *et al.*, From bench to bedside: Advancing liposomal doxorubicin. Results in Surfaces and Interfaces. 2025;100473. DOI: 10.1016/j.rsurfi.2024.100473

101. Ekanayake G, *et al.*, In vitro release kinetics of bioactive compounds from chitosan. *Sci Rep.* 2025;15[1]. DOI: 10.1038/s41598-024-81234-5

102. Bácskay I, *et al.*, Bioavailability Enhancement of Oral Mucosal Dosage Forms. *Pharmaceutics.* 2025;17[2]:148. DOI: 10.3390/pharmaceutics17020148

103. Wu X, *et al.*, Intestinal retentive delivery system for improved disease therapy. *J Control Release.* 2025;384. DOI: 10.1016/j.jconrel.2024.113903

104. Martínez E, *et al.*, Oral dosage forms for drug delivery to the colon. *J Mater Sci Mater Med.* 2025;36[1]. DOI: 10.1007/s10856-024-06832-w

105. Vilcanqui Y, *et al.*, Effect of Microparticle Crystallinity and Food Matrix on release. *Antioxidants.* 2025;14[10]:1211. DOI: 10.3390/antiox14101211

106. Freitas D, *et al.*, Starch digestion: A comprehensive update. *Trends Food Sci Technol.* 2025;104969. DOI: 10.1016/j.tifs.2024.104969

107. Dwivedi J, *et al.*, Phytosome based cosmeceuticals for percutaneous absorption. *J Res Pharm.* 2025;29[1]. DOI: 10.29228/jrp.742

108. Bhalani DV, *et al.*, Bioavailability enhancement techniques for poorly soluble drugs. *Biomedicines.* 2022;10[9]:2055. DOI: 10.3390/biomedicines10092055

109. Aghajanpour S, *et al.*, Machine learning for predicting drug release. *Comput Biol Med.* 2025;188. DOI: 10.1016/j.compbioimed.2024.109756

110. Shelef O, *et al.*, Enzymatic activity profiling using chemiluminescent probes. *J Am Chem Soc.* 2024;146[8]. DOI: 10.1021/jacs.3c13154

111. Bender C, *et al.*, Evaluation of in vitro tools to predict in vivo absorption. *J Pharm Sci.* 2022;111[9]. DOI: 10.1016/j.xphs.2022.04.017

112. Bourderi-Carbon A, *et al.*, Improving IVIVC for Lipid-Based Formulations. *Pharmaceutics.* 2025;17[10]:1310. DOI: 10.3390/pharmaceutics17101310

113. Hong C-E, Lyu S-Y. Immunomodulatory Natural Products in 3D Tumor Spheroids. *Pharmaceutics.* 2025;17[10]:1258. DOI: 10.3390/pharmaceutics17101258

114. Kumar G, *et al.*, Transforming cancer treatment: The potential of nanonutraceuticals. *Int J Pharm.* 2024;667. DOI: 10.1016/j.ijpharm.2024.124919

115. Dewi MK, *et al.*, Improved activity of herbal medicines through nanotechnology. *Nanomaterials.* 2022;12[22]. DOI: 10.3390/nano12224073

116. Walendziak W, *et al.*, Plant extracts in chitosan microparticles for skin condition. *Eur Polym J.* 2025;113968. DOI: 10.1016/j.eurpolymj.2024.113968

117. Tarigan IL, *et al.*, Characterization of Microencapsules of Sungkai Leaves. *Chempublish J.* 2025;9[1]. DOI: 10.22437/chp.v9i1.34125

118. Abedelmaksoud TG, *et al.*, Bioactive Compounds of Plant-Based Food. *Food Sci Nutr.* 2025;13[6]. DOI: 10.1002/fsn3.4428

119. O'Toole MS, *et al.*, Cognitive behavioral therapies systematic review. *J Affect Disord.* 2025;119791. DOI: 10.1016/j.jad.2024.11.082

120. Nakadate K, *et al.*, Anti-Inflammatory Actions of Plant-Derived Compounds. *Int J Mol Sci.* 2025;26[11]:5206. DOI: 10.3390/ijms26115206

121. Mishra Y, *et al.*, Nanotechnology to herbal antioxidants as improved phytomedicine. *Biomed Pharmacother.* 2022;153. DOI: 10.1016/j.bioph.2022.113413

122. Nazir A, *et al.*, Global Challenge of Antimicrobial Resistance. *Heal Sci Reports.* 2025;8[7]. DOI:

10.1002/hsr2.71077

123. Yadav R, *et al.*, Herbal based nanoparticles as potential treatment of cancer. *Explor Target Antitumor Ther.* 2025. DOI: 10.37349/etat.2025.00285

124. Yao Y, *et al.*, Nanoparticle-based drug delivery in cancer therapy. *Front Mol Biosci.* 2020;7:193. DOI: 10.3389/fmolb.2020.00193

125. Imitiaz S, *et al.*, Mechanistic study of cancer drug delivery. *Eur J Med Chem.* 2025;117535. DOI: 10.1016/j.ejmech.2024.117535

126. Qi Y, *et al.*, Advanced nanotherapies for inflammatory lung diseases. *Bioact Mater.* 2025;53:329–65. DOI: 10.1016/j.bioactmat.2024.10.015

127. Lee Y, *et al.*, Injectable Hydrogel Systems for Targeted Drug Delivery. *Appl Sci.* 2025;15[21]. DOI: 10.3390/app152111599

128. Ahmed GEM, *et al.*, Prevalence of traditional healing methods in Sudan. *Heal Sci Reports.* 2023;6[8]. DOI: 10.1002/hsr2.1487

129. Mihaylova R, *et al.*, Targeting inflammation with natural products: iridoids. *Molecules.* 2025. DOI: 10.3390/molecules30010045

130. Latif R, Nawaz T. Medicinal plants and human health: a review. *Phytochem Rev.* 2025. DOI: 10.1007/s11101-024-09982-x

131. Mandrioli D, Silbergeld EK. Evidence from toxicology for prevention. *Environ Health Perspect.* 2015;124[1]. DOI: 10.1289/ehp.1510269

132. Prior H, *et al.*, Chronic toxicity study designs and 3Rs. *Int J Toxicol.* 2024;43[5]. DOI: 10.1177/10915818241245612

133. Jităreanu A, *et al.*, Toxicity assessment of herbal medicines. *Processes.* 2022;11[1]:83. DOI: 10.3390/pr11010083

134. Onoue S. New Drug Delivery Systems for Stable Oral Absorption. *Biol Pharm Bull.* 2024;47[11]. DOI: 10.1248/bpb.b24-00650

135. Lou J, *et al.*, Advances in oral drug delivery systems. *Pharmaceutics.* 2023;15[2]:484. DOI: 10.3390/pharmaceutics15020484

136. Clemente-Suárez VJ, *et al.*, Biomimetic Strategies for Nutraceutical Delivery. *Biomimetics.* 2025;10[7]. DOI: 10.3390/biomimetics10070426

137. Jurić S, *et al.*, Alginate/chitosan microparticles for agricultural application. *Appl Sci.* 2021;11[9]:4061. DOI: 10.3390/app11094061

138. Kupikowska-Stobba B, *et al.*, Controlled lipid digestion for personalized foods. *Food Chem.* 2025;466. DOI: 10.1016/j.foodchem.2024.142151

139. Ma Y, *et al.*, Pharmacokinetic research on TCM saponins. *Front Pharmacol.* 2024;15. DOI: 10.3389/fphar.2024.1393409

140. Homayun B, *et al.*, Oral drug delivery systems for biopharmaceuticals. *Pharmaceutics.* 2019;11[3]:129. DOI: 10.3390/pharmaceutics11030129

141. Cahyani DM, *et al.*, Nanoparticle tools for maximizing oral drug delivery. *Brazilian J Med Biol Res.* 2025;58. DOI: 10.1590/1414-431X2024e14459

142. Isopencu GO, *et al.*, From plants to wound dressing. *Plants.* 2023;12[14]:2661. DOI: 10.3390/plants12142661

143. Yu Y-Q, *et al.*, Enhancing permeation of drug molecules via nanocarriers. *Front Bioeng Biotechnol.* 2021;9. DOI: 10.3389/fbioe.2021.646554

144. Karthikeyan E, Sivaneswari S. Advancements in transdermal drug delivery systems. *Intell Pharm.* 2024. DOI: 10.1016/j.intel.2024.08.003

145. Lunter D, *et al.*, Progress in topical drug delivery research. *Pharmaceutics.* 2024;16[6]:817. DOI: 10.3390/pharmaceutics16060817

146. Montoya-Yepes DF, *et al.*, Starches in the encapsulation of plant ingredients. *Polym Bull.* 2024;81[1]:135–63. DOI: 10.1007/s00289-023-04756-1

147. Jacob S, *et al.*, Injectable Depot System of Lidocaine Nanoemulsion. *Pharmaceutics.* 2025;17[10]:1355. DOI: 10.3390/pharmaceutics17101355

148. Gross-Rother J, *et al.*, Particle detection for biopharmaceutical applications. *Pharmaceutics.* 2020;12[11]:1112. DOI: 10.3390/pharmaceutics12111112

149. Knap K, *et al.*, Inhalable microparticles as drug delivery systems. *Regen Biomater.* 2023;10. DOI: 10.1093/rb/rbac099

150. Tariq RA, *et al.*, Medication dispensing errors and prevention. *StatPearls;* 2018. PMID: 30085607

151. van Stralen SA, *et al.*, Evaluating considerations in double-checking medication. *Heliyon.* 2024;10[4]. DOI: 10.1016/j.heliyon.2024.e25862

152. Salehi M, Rashidinejad A. Plant-derived bioactive polysaccharides review. *Int J Biol Macromol.* 2025;290. DOI: 10.1016/j.ijbiomac.2024.138855

153. Zahra D, *et al.*, Chitosan polyherbal hydrogel loaded with AgNPs. *Int J Biol Macromol.* 2024;281. DOI: 10.1016/j.ijbiomac.2024.135896

154. Stauffer F, *et al.*, Managing API raw material variability. *Eur J Pharm Biopharm.* 2019;135:49–60. DOI: 10.1016/j.ejpb.2018.12.003

155. Maurya R, *et al.*, Transforming medicinal oil into advanced gel. *Gels.* 2024;10[5]:342. DOI: 10.3390/gels10050342

156. Kumar J, Bajpai T. Quality Control of Polyherbal Formulations Using HPLC. *Int J Pharmacogn Herb Drug Technol.* 2025. DOI: 10.5530/ijphdt.2025.1.18

157. Paul T, Kumar KJ. Standardization of herbal medicines for lifestyle diseases. Springer; 2024. DOI: 10.1007/978-981-99-9404-5\_22

158. Dhariwal R, *et al.*, Targeted drug delivery in neurodegenerative diseases. *Front Med.* 2025;12. DOI: 10.3389/fmed.2025.1522223

159. Cano A, Turowski P, Ettcheto M, Duskey JT, Tosi G, Sánchez-López E, *et al.*, Nanomedicine-based technologies and novel biomarkers for the diagnosis and treatment of Alzheimer's disease: from current to future challenges. *J Nanobiotechnology.* 2021;19[1]:122. DOI: 10.1186/s12951-021-00864-1

160. Estarriaga-Navarro S, Valls T, Plano D, Sanmartín C, Goicoechea N. Potential application of plant by-products in biomedicine: From current knowledge to future opportunities. *Antioxidants.* 2025;14[8]:942. DOI: 10.3390/antiox14080942