Hormonal Interventions to Augment Fertility and its Effect on Blood Biochemical Profile in Crossbred Cows

Rajesh Kumar1,*, M.G. Butani2, F.S. Kavani3 and A.J. Dhami4

1Assistant Professor, Department of Veterinary Gynaecology & Obstetrics, C.V. Sc. & AH, ANDUAT, Aydhya, UP, India
2Veterinary Officer, Amul Dairy, Anand, Gujarat, India
3Professor & Head, Department of Veterinary Gynaecology & Obstetrics, C.V.Sc.& A.H., AAU, Anand, Gujarat, India
4Rtd. Professor & Head, Department of Veterinary Gynaecology & Obstetrics, C.V.Sc.& A.H., AAU, Anand, Gujarat, India

DOI: 10.36348/sjl.2020.x05i09.005

*Corresponding author: Dr. Rajesh Kumar

Abstract

A study was carried out on forty four problem breeder cows to evaluate the therapeutic efficacy of GnRH and PGF2α for estrus induction response, time elapsed between treatment to estrus induction interval and conception rate and its effect on biochemical profile. Thirteen true anestrus cows were treated with GnRH (Inj. Receptal, 2.5 ml, IM, once), twenty three subestrus cows were treated with PGF2α (PGF2α, Inj. Estrumet, 2 ml, IM, once) and eight animals kept as untreated anestrus control. The estrus induction response, treatment to estrus induction interval, overall conception rate and service per conception in GnRH treated, PGF2α treated and positive control cows were 84.62%, 28.27±6.46 days, 72.73%, 3.13; 91.30%, 3.52±0.46 days, 71.43%, 2.53 and 50%, 48.25±10.8 days, 50%, 3.5 respectively. The plasma P4 level was significantly lower in all three groups as compared to other two periodic values (d-0 & d-20-22 post AI) which were due to luteal demise. The mean serum total protein was significantly (p<0.05) lower in untreated anestrus (8.57±0.36 g/dl) as compared to GnRH (9.75±0.28 g/dl) and PGF2α (9.62±0.31 g/dl) treated cows. However, Total cholesterol was numerically lowest in control cows than those of treated contemporaries but did not differ significantly (168.22±17.22; 208.46±14.71; 163.84±10.64 mg/dl; in GnRH, PGF2α and control group respectively, p<0.05). The Macro (Ca, P and Mg) and micro minerals (Zn, Fe, Cu, Co, and Mn) did not differ significantly among different groups. In conclusion, anestrus and subestrus cows can be well managed with GnRH and PGF2α therapy. The normal hormonal and biochemical milieu is essential for normal functioning of reproductive system.

Keywords: Anestrus cows, biochemical profile, hormone, minerals and subestrus cows.

INTRODUCTION

Bovine anestrus syndrome is one of the most prevalent reproductive disorders of dairy cows [1, 2] which results in significant economic loss due to prolonged calving interval, reduced calf crop, and shorter productive life [3]. To resume cyclicity threshold LH concentration is obligatory. Prolonged period of ovarian afunction and failure of ovulation is mainly due to suboptimal plasma LH concentration. The causes of anestrus are multifactorial in origin, and there is no single panacea to correct the clinical syndrome. In spite of nutritional management [4], it is primarily addressed by hormonal therapy [5]. Normal level of biochemical constituents are utmost important for normal reproductive function. Thus, the study was undertaken to assess the efficacy of hormonal treatment (GnRH and PGF2α) for management of clinical syndrome of anestrus and its effect on blood biochemical profile.

MATERIALS AND METHODS

The study was carried out in the milk shed areas of Anand district, Gujarat. Anestrus cows were screened by twice trans-rectal palpation ten days apart and grouped as anestrus (n=13), subestrus (n=23) and positive control (n=8; untreated anestrus cows). All cows dewormed with Albendazole 3000 mg and owners were supplied with 1 kg mineral mixture (Amul brand) for feeding to their cows @ 30g per day for one month. The anestrus cows were treated with single dose Buserelin acetate @ 10 μg, intramuscularly (GnRH, Inj. Receptal, 2.5 ml, MSD) and subestrus cows subjected with Cloprostenol (@ 500 μg, intramuscularly (PGF2α, Inj. Estrumet, 2 ml, MSD), respectively. The estrus induction response (EIR), treatment to estrus...
induction interval (TEI), cycle wise conception rate i.e. conception rate (CR) at induced estrus (first service conception rate; FSCR), two subsequent natural estrus, and overall conception rate (OCR) were recorded. Estrus detection was done by visual observation and per rectal examination, if found in estrus, inseminated by village AI workers with frozen thawed semen following AM-PM rule. The animals were observed for return to estrus up to three cycles and returning animals were bred through AI. Pregnancy was confirmed by transrectal palpation 60 days post-AI.

Blood samples were collected on the day of treatment (d-0), day of induced estrus/AI and day 20-22 post-AI by jugular vein puncture in heparinized vacutainers. The plasma was separated out by centrifugation of samples on the spot and stored at -20°C with a drop of merthiolate (0.1%) as preservative until analyzed. The plasma progesterone was estimated by employing standard RIA technique of Kubasic et al. [6]. The levels of protein, cholesterol, triglycerides and macro-minerals (Ca, P, Mg) were estimated by using standard procedures and assay kits of Coral Clinical System, Goa on biochemistry analyzer. The generated data were analyzed statistically completely randomized design and Duncan’s NMRT [7].

RESULTS AND DISCUSSION

Estrus Induction response and Conception rate

Estrus induction response, treatment to estrus induction interval, and conception rate were depicted in table 1. The present findings suggest that ovulatory estrus can be induced in a month or so, with use of GnRH in apparently healthy anestrus cows. Variable EIR and CR with GnRH treatment in anestrus cows have been documented. Like current findings, Karmakar et al., [8] recorded similar EIR (85%) using GnRH and vitamin A in true anestrus crossbred cows. Conversely, variable EIR and CR were reported by many previous researchers [3, 9, 10, 11, 12, 13, 14, 15].

Variation in EIR and CR might be due to variation in age, breed parity and nutritional status of animals. The present study clearly indicates that ovarian cyclicity with ovulatory estrus can be effectively induced in a month or so with GnRH in apparently healthy anestrus cows.

Like present observations in PGF$_{2α}$ treated subestrus cows, comparable findings was recorded by Gupta et al., [11] (90%; 2.37±0.33 days and 78%; EIR, TEI and CR respectively) and El-Shahat and Badr [9] (87.5% EIR, 53.7±4.2 h TEI and 71.42 % CR). Conversely, El-Desouky and Hussein [16] recorded variable response using standard dose versus over dose of PGF$_{2α}$ (65%, 4.53±0.44 days, 1.61±0.24 and 84.60% with 500μg vs 85%, 2.47±0.10 days, 1.41±0.17 and 82.30% with 750 μg; EIR, TEI, SPC and CR respectively) in postpartum cows; Dailey et al., [17] reported lower EIR (41.6%) where as Ratnaparkhi et al., [15] observed higher EIR and FSCR (100% & 40%) in PGF$_{2α}$ treated dairy cows.

The present findings clearly indicate that subestrus condition in cattle can be successfully treated with PGF$_{2α}$.Whether prostaglandins (PGs) have direct effects on follicular growth prior to luteinizing hormone (LH) surge to initiate ovulation in livestock is unknown [18], but PGF$_{2α}$ increases pituitary responsiveness to GnRH to release LH in the postpartum cows [19], however, PGs produced by the ovulatory follicle are indispensable for ovulation [20]. Furthermore, Pfeifer et al., [21] opined that GnRH can induce ovulation of dominant follicle by an independent mechanism of luteolysis and can be successfully used as an ovulation inducer in timed artificial insemination protocols for beef [22] and dairy cows [23]. The EIR, TEI and CR of treated cows was far more better as compared to untreated contemporaries, which suggest positive impact of GnRH and PGF$_{2α}$ in management of anestrus and subestrus cases.

Table 1:

<table>
<thead>
<tr>
<th>Group</th>
<th>Therapy</th>
<th>EIR (%)</th>
<th>TEI (days)</th>
<th>Conception Rate (%)</th>
<th>SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1st AI</td>
<td>2nd AI</td>
<td>3rd AI</td>
<td>OCR</td>
</tr>
<tr>
<td>Anestrus (n=13)</td>
<td>GnRH (10 μg)</td>
<td>84.62% (11/13)</td>
<td>28.27 ±6.46</td>
<td>18.18% (2/11)</td>
<td>44.44% (4/9)</td>
</tr>
<tr>
<td>Subestrus (n=23)</td>
<td>PGF$_{2α}$ (500μg)</td>
<td>91.30% (21/23)</td>
<td>3.52 ±0.46</td>
<td>52.38% (11/21)</td>
<td>30.00% (3/10)</td>
</tr>
<tr>
<td>Anestrus control (n=8)</td>
<td>None</td>
<td>50% (4/8)</td>
<td>48.25±10.80</td>
<td>25% (1/4)</td>
<td>33.33% (1/3)</td>
</tr>
</tbody>
</table>

EIR: Estrus induction response; TEI: Treatment to estrus induction interval; OCR: Overall conception rate; SPC: Service per conception

Effect of Hormone Therapy on Plasma Progesterone

The mean progesterone concentration (P$_4$ values) was depicted in table 2. Significantly higher P$_4$ was recorded at d-0 in GnRH and untreated control group which might be due to failure to diagnose presence of corpus luteum during trans-rectal ovarian palpation at commencement of experiment [24, 25]. Numerically highest P$_4$ values was recorded at d-0 in subestrus cows than GnRH and control groups, as former cows screened on the basis of presence of CL on the ovary. At d-20-22 post AI, the P$_4$ level was highest in PGF$_{2α}$ group, it appears that exogenously
administered PGF$_{2\alpha}$ strengthen the luteal activity of subsequently formed corpus luteum, as PGF$_{2\alpha}$ act at the level of hypothalamus and pituitary, enhance GnRH induced LH release [19]. Moreover, the highest conception rate at induced estrus in PGF$_{2\alpha}$ treated subestrus cows supported the view that luteal insufficiency might be a cause of lower conception rate at induced estrus in GnRH treated anestrus cows. The mean P$_4$ value was higher in conceived cows as compared to non-conceived cows at d-20-22 post AI. Which suggest luteal inadequacy might be a cause of conception failure in such cows.

Table-2: Serum Progesterone profile at d-0, induced estrus and day 20-22 post AI in different categories of cows

<table>
<thead>
<tr>
<th>Therapy/status</th>
<th>n</th>
<th>Serum Progesterone (ng/ml)</th>
<th>At d-0</th>
<th>At estrus/AI</th>
<th>At day-20-22 post AI</th>
<th>Overall or pooled</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH/true anestrus</td>
<td>13</td>
<td>1.94±0.40a</td>
<td>0.51±0.10a</td>
<td>4.62±2.01a</td>
<td>2.36±0.75a</td>
<td></td>
</tr>
<tr>
<td>PGF$_{2\alpha}$/subestrus</td>
<td>23</td>
<td>3.99±0.58b</td>
<td>0.54±0.05b</td>
<td>6.09±1.42b</td>
<td>3.54±0.65b</td>
<td></td>
</tr>
<tr>
<td>Control/untreated</td>
<td>8</td>
<td>1.58±0.31c</td>
<td>0.45±0.07c</td>
<td>2.78±1.27c</td>
<td>1.61±0.47c</td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>44</td>
<td>2.68±0.35d</td>
<td>0.56±0.05d</td>
<td>5.05±0.82d</td>
<td>2.77±0.36d</td>
<td></td>
</tr>
<tr>
<td>Conceived</td>
<td>25</td>
<td>3.02±0.62e</td>
<td>0.52±0.08e</td>
<td>7.71±1.15e</td>
<td>3.75±0.66e</td>
<td></td>
</tr>
<tr>
<td>Non-conceived</td>
<td>19</td>
<td>2.36±0.34f</td>
<td>0.61±0.05f</td>
<td>2.59±0.62f</td>
<td>1.85±0.27f</td>
<td></td>
</tr>
</tbody>
</table>

Means bearing different superscripts within row differ significantly (p<0.05)

Effect of Hormone Therapy on Plasma Biochemical Profile

The overall mean total serum protein in untreated anestrus cows was significantly lower than GnRH and PGF$_{2\alpha}$ treated cows (table 3). Lower total protein in anestrus cows was in accordance with many previous reports [4, 26, 27, 28, 29, 30, 31]. Furthermore, the protein level was lower in conceived cows as compared to non-conceived contemporaries and the findings are in agreement with Dhami et al. [32] who reported lower total protein in conceived than non-conceived cows (9.30±0.19 vs 10.80±0.20 mg/dl) in ovsynch treated cows. Hypoproteinemia may cause deficiency of certain amino acids required for biosynthesis of gonadotrophins and other gonadal hormones, might cause reproductive endocrine anomaly leading to function of ovary [33]. Furthermore, Pandey et al., [34] opined that rise of plasma total protein might be associated with high level of estrogenic activity.

Table-3: Overall (± SE) blood biochemical and macromineral status in different treatment groups and conceiving and non-conceiving cows

<table>
<thead>
<tr>
<th>Therapy/status</th>
<th>n</th>
<th>Total protein (g/dl)</th>
<th>Cholesterol (mg/dl)</th>
<th>Calcium (mg/dl)</th>
<th>Phosphorus (mg/dl)</th>
<th>Magnesium (mEq/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH/true anestrus</td>
<td>13</td>
<td>9.75±0.28a</td>
<td>168.22±17.22</td>
<td>9.06±0.28</td>
<td>8.61±0.27</td>
<td>3.40±0.15</td>
</tr>
<tr>
<td>PGF$_{2\alpha}$/subestrus</td>
<td>23</td>
<td>9.62±0.31b</td>
<td>208.46±14.71</td>
<td>10.68±0.26</td>
<td>9.48±0.22</td>
<td>3.70±0.14</td>
</tr>
<tr>
<td>Control/untreated</td>
<td>8</td>
<td>8.57±0.36c</td>
<td>163.84±10.64</td>
<td>9.39±0.12</td>
<td>8.28±0.15</td>
<td>3.09±0.14</td>
</tr>
<tr>
<td>Overall</td>
<td>44</td>
<td>9.57±0.18d</td>
<td>187.89±8.56</td>
<td>9.98±0.18</td>
<td>8.72±0.15</td>
<td>3.64±0.09</td>
</tr>
<tr>
<td>Conceived</td>
<td>25</td>
<td>9.41±0.27e</td>
<td>182.82±11.76</td>
<td>10.04±0.29</td>
<td>8.91±0.27</td>
<td>3.84±0.11</td>
</tr>
<tr>
<td>Non-conceived</td>
<td>19</td>
<td>9.73±0.24f</td>
<td>192.59±12.47</td>
<td>9.92±0.22</td>
<td>8.55±0.17</td>
<td>3.46±0.15</td>
</tr>
</tbody>
</table>

Means bearing different superscripts within column differ significantly (p<0.05)

The overall mean total cholesterol level was numerically lowest in untreated anestrus cows but did not differ significantly among different groups (table 3). The findings are comparable with many previous reports [13, 18, 29] who recorded lower cholesterol concentration in anestrus cows. Like present study, nonsignificant difference in total cholesterol level was recorded by Dhami et al., [32] in conceived and non-conceived cows (136.72±1.48 vs 120.46±3.05 mg/dl). Current findings are supported by Henerick et al. [35] who opined that the highest adrenal cholesterol values occur at estrus when females are under estrogen dominance eventually facing a decline later when progesterone phase sets in. This is again supported by present lower overall pooled value of cholesterol in conceived (progesterone dominance) than those of non-conceived cows.

Effect of Hormone Therapy on Plasma Minerals Profile

The serum calcium level did not vary significantly among groups (table 3). Like present findings many previous reports mentioned non-significantly or significantly lower calcium level in anestrus cows as compared to values at induced estrus or cyclic cows [4, 13, 14, 26, 28, 29, 30, 36, 37], the available reports suggest that lower calcium level might be a cause of anestrus. Furthermore, in present study the calcium level was higher in conceived cows but did not differ significantly as compared to non-conceived contemporaries, conversely, Dhami et al., [32] reported nonsignificantly lower calcium level (9.52±0.14 vs 8.85±0.11 mg/dl) in conceived than non-conceived ovsynch treated cows. Calcium primarily have indirect effect on reproduction [38] (hypocalcemia predispose
observed, the profile is important, likely higher in conceived cows. Radostits, Srivastava, S., and Kumar, R. (2020). Significantly, anestrus, assessment of blood biochemical conditions in crossbred cows can be effectively managed with aforesaid therapeutic regimes. CONCLUSION of cyclic cows. Lower iron and copper levels in anestrus cows than those managed with aforesaid therapeutic regimes. Present findings of lower iron and copper concentrations are consistent with observations of Desai et al., 48] opined that reproductive function of male and females are most sensitive to manganese deficiency. Present findings of lower iron and copper concentrations are consistent with observations of Vadnere and Singh 49] who reported significantly lower iron and copper level in anestrus cows than those of cyclic cows.

CONCLUSION In conclusion, anestrus and subestrus conditions in crossbred cows can be effectively managed with aforesaid therapeutic regimes. Assessment of blood biochemical profile is important for better understanding of clinical syndrome of anestrus.

The mean phosphorus level did not differ significantly in different groups but the value was lowest in untreated anestrus cows (table. 3). Present findings suggest that as the animal approached towards cyclicity the phosphorus level was improved. Similar patterns documented in many previous reports [13, 26, 28, 29, 30]. Furthermore, Dhami et al. 32] observed nonsignificant difference among conceived and non-conceived cows using ovsynch protocols in crossbred cows. Blood level below 4 mg/dl usually indicate phosphorus deficiency [33, 42], normal values being 4 to 8 mg/ dl. Phosphorus is the mineral most frequently associated with reproductive abnormalities in cattle. [38], some scientists [43, 44] suggest that phosphorus deficiency causes infertility (anestrus, subestrus, irregular cycle, and low conception rates) while others [45] found no evidence of hypophosphataemia associated infertility. Thus, there is conflicting opinion of several scientists about hypophosphataemia as a cause of infertility [42].

The magnesium level was lowest in untreated anestrus cows as compared to treated cows, though the difference was nonsignificant (table. 3). Furthermore, the value was numerically higher in conceived cows than non-conceived one. Magnesium (Mg) requirement is more at time of occurrence of high energy demand, as association of Mg is well known as a co-factor in all ATP requiring enzymatic processes in general metabolism.

<table>
<thead>
<tr>
<th>Therapy/status</th>
<th>.n</th>
<th>Zinc</th>
<th>Iron</th>
<th>Copper</th>
<th>Cobalt</th>
<th>Manganese</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnRH/true anestrus</td>
<td>13</td>
<td>1.13±0.08</td>
<td>2.94±0.14</td>
<td>0.66±0.03</td>
<td>0.18±0.02</td>
<td>0.09±0.01</td>
</tr>
<tr>
<td>PGF2α/subestrus</td>
<td>23</td>
<td>0.72±0.04</td>
<td>3.19±0.14</td>
<td>0.63±0.03</td>
<td>0.13±0.01</td>
<td>0.08±0.01</td>
</tr>
<tr>
<td>Control/untreated</td>
<td>8</td>
<td>0.88±0.04</td>
<td>2.63±0.12</td>
<td>0.45±0.02</td>
<td>0.13±0.01</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>Overall</td>
<td>44</td>
<td>1.04±0.07</td>
<td>3.06±0.09</td>
<td>0.64±0.02</td>
<td>0.14±0.01</td>
<td>0.08±0.01</td>
</tr>
<tr>
<td>Conceived</td>
<td>25</td>
<td>1.05±0.12</td>
<td>3.02±0.10</td>
<td>0.65±0.03</td>
<td>0.13±0.01</td>
<td>0.06±0.01</td>
</tr>
<tr>
<td>Non-conceived</td>
<td>19</td>
<td>1.03±0.06</td>
<td>3.09±0.14</td>
<td>0.63±0.02</td>
<td>0.15±0.01</td>
<td>0.09±0.01</td>
</tr>
</tbody>
</table>

Means bearing different superscripts within column differ significantly (p<0.05)

ACKNOWLEDGEMENT
We thank Dean of the faculty for facility provided and secretaries of village co-operative societies, including animal owner for the co-operation extended for this work. The financial support received from Research Scientist & Head, RBRU, AAU, Anand through their DBT project is also gratefully acknowledged.

REFERENCES

