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Abstract  
 

The persistent increase in atmospheric CO₂ levels presents a dual challenge of environmental mitigation and sustainable 

energy generation. This study introduces a unified nano-engineered platform combining nanostructured metals, plasmonic 

nanoparticles, quantum dots, and defect-rich TiO₂ to drive selective CO₂ conversion into CO, CH₄, and CH₃OH. By 

leveraging synergistic nano-interfaces, this work integrates catalytic activity with optoelectronic functionality, enabling 

simultaneous energy harvesting and chemical transformation. Nanostructured metals provide tailored surface states for 

CO₂ adsorption, while plasmonic nanoparticles induce hot-electron injection, and quantum dots facilitate directional charge 

transfer. Defective TiO₂ layers introduce oxygen vacancies that localize charges and modulate reaction pathways. 

Comprehensive material characterization using TEM, XRD, XPS, PL, and UV–Vis spectroscopy confirms controlled 

interface formation, defect density, and optical enhancement. CO₂ conversion experiments under gas-phase and photo-

assisted modes demonstrate tunable product selectivity via defect engineering and electrical bias application. The hybrid 

platform achieves enhanced Faradaic efficiency, turnover number, and operational stability compared to conventional 

systems. Mechanistic insights reveal that defect-plasmon-quantum dot interactions govern charge localization and transfer, 

providing a predictive framework for reaction steering. Integration with photovoltaic and optoelectronic modules 

showcases the feasibility of combined chemical and energy conversion, offering a pathway toward scalable, smart CO₂-
to-fuel system. These findings provide a transformative approach to CO₂ utilization, highlighting the potential for 

decentralized renewable energy generation and sustainable fuel production. The methodology and insights reported herein 

establish a foundation for designing multi-functional catalytic systems with controllable reaction pathways and integrated 

energy recovery. 

Keywords: CO₂ reduction, Nanostructured metals, Plasmonic nanoparticles, Quantum dots, Defective TiO₂. 
Copyright © 2026 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International 

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original 
author and source are credited. 

 

1. INTRODUCTION 
Carbon dioxide conversion has transitioned 

from an environmental mitigation concept to a strategic 

energy research frontier. Rather than treating CO₂ as an 

unavoidable emission, emerging perspectives recognize 

it as a chemically stable yet abundant carbon reservoir 

that can be deliberately activated and transformed. 

However, the complexity of CO₂ utilization lies in its 

multiscale nature, spanning molecular activation, 

interfacial charge transport, and system-level energy 

management. Addressing these dimensions in isolation 

has yielded incremental progress but has failed to deliver 
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transformative performance. This study adopts a holistic 

framework in which CO₂ capture, catalytic conversion, 

and energy harvesting are treated as interconnected 

processes governed by coupled electronic and photonic 

phenomena. By structuring the investigation around 

material synergy rather than individual functionality, the 

present work establishes a coherent pathway from 

fundamental reaction barriers to device-level energy 

conversion outcomes [1,2,166]. 

 

1.1 Global CO₂ Challenge and Energy Conversion 

Imperative 

Carbon dioxide has emerged as one of the most 

persistent thermodynamic sinks in modern energy 

systems. Its linear molecular structure and strong C=O 

bonds render it chemically stable, making spontaneous 

activation highly unfavorable under ambient conditions. 

As a result, CO₂ accumulation continues to rise despite 

decades of mitigation strategies, positioning it 

simultaneously as an environmental liability and a 

dormant carbon resource. The central challenge is not 

merely capturing CO₂, but converting it into value-added 

products through energetically feasible and selective 

pathways [3,4]. 

 

From a kinetic perspective, CO₂ reduction 

reactions are hindered by high activation barriers and 

competitive side reactions. Conventional thermal 

catalysis often demands elevated temperatures and 

pressures, which compromise energy efficiency and 

long-term material stability. Electrochemical routes, 

while promising, suffer from poor selectivity and limited 

scalability when operated as isolated systems. These 

limitations collectively highlight that CO₂ conversion is 

not a single-step problem, but a multi-stage process 

involving capture, activation, charge transfer, and 

product desorption. Current CO₂ capture technologies, 

including amine scrubbing and physical adsorption, 

remain largely decoupled from downstream utilization. 

This separation introduces energy penalties due to 

compression, transport, and regeneration steps. More 

critically, captured CO₂ is rarely converted in situ, 

leading to system-level inefficiencies. These drawbacks 

expose a fundamental design flaw: capture and 

conversion are treated as independent processes rather 

than components of a unified energy platform. 

 

An integrated capture–conversion–energy 

framework is therefore essential. Such a framework must 

simultaneously address molecular activation, reaction 

selectivity, and energy harvesting. The convergence of 

catalysis with photovoltaic and optoelectronic 

functionalities offers a viable pathway toward this 

integration. By harnessing photonic energy and 

electronically tunable interfaces, CO₂ conversion can be 

driven under milder conditions with improved selectivity 

control [5-7]. 

 

 
Figure 1. Schematic of CO₂ capture and selective conversion to CO, CH₄, and CH₃OH via integrated nano-

interfaces. 

 

Conceptual schematic illustrating CO₂ capture, 

molecular activation, and selective multi-pathway 

conversion toward CO, CH₄, and CH₃OH through 

coupled catalytic, photovoltaic, and optoelectronic 

processes. 

 

Among potential reduction products, carbon 

monoxide (CO), methane (CH₄), and methanol 

(CH₃OH) occupy strategic positions in the energy 

landscape. CO serves as a critical feedstock for Fischer–

Tropsch synthesis and syngas chemistry. CH₄ represents 

a high-energy-density fuel compatible with existing 

infrastructure. CH₃OH functions as both a liquid fuel and 

a versatile chemical intermediate. Importantly, these 

products arise from distinct reaction pathways, each 

governed by different electron-proton transfer sequences 

and surface binding energetics. The ability to selectively 

direct CO₂ toward CO, CH₄, or CH₃OH within a single 
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platform would constitute a transformative advance. 

Achieving this requires precise control over charge 

localization, reaction intermediates, and energy input 

modes. Consequently, the focus must shift from isolated 

catalytic activity toward system-level reaction pathway 

engineering [8,9]. 

 

1.2 Nanostructured Materials as Catalytic and Photo-

Active Platforms 

Nanostructured materials provide a unique 

opportunity to overcome the thermodynamic and kinetic 

barriers associated with CO₂ conversion. At the 

nanoscale, surface-to-volume ratios increase 

dramatically, exposing under-coordinated atoms and 

tunable electronic states. These features are particularly 

advantageous for stabilizing reaction intermediates and 

lowering activation energies [10-15]. 

 

Nanostructured metals play a critical role in this 

context due to their adjustable surface states and d-band 

centers. By tailoring particle size, morphology, and 

crystallographic orientation, adsorption energies of key 

intermediates such as *COOH and *CHO can be 

modulated. This enables preferential reaction pathways 

to be activated while suppressing undesired side 

reactions. However, metallic catalysts alone often lack 

sufficient control over photonic energy utilization. 

 

Plasmonic nanoparticles introduce an 

additional dimension through localized surface plasmon 

resonance. Upon light excitation, collective electron 

oscillations generate non-equilibrium hot carriers 

capable of driving endergonic surface reactions. These 

hot electrons can transiently populate antibonding 

orbitals of adsorbed CO₂ molecules, facilitating bond 

bending and activation. Despite this advantage, 

plasmonic systems suffer from rapid carrier relaxation 

unless coupled with suitable charge acceptors [16-19]. 

 

Quantum dots offer precisely this capability. 

Their size-dependent band structures allow fine control 

over energy level alignment with adjacent materials. 

When integrated with plasmonic or catalytic 

components, quantum dots act as charge mediators, 

prolonging carrier lifetimes and enhancing interfacial 

charge transfer. This property is particularly valuable for 

directing multi-electron reduction pathways required for 

CH₄ and CH₃OH formation. 

 

Defective titanium dioxide further 

complements this material ensemble. Oxygen vacancies 

introduce mid-gap states that serve as electron traps and 

adsorption sites for CO₂. These defects enhance visible-

light absorption and improve charge separation 

efficiency. More importantly, defect density can be 

deliberately tuned, offering a handle to regulate reaction 

kinetics and selectivity [20-26]. 

 

Individually, nanostructured metals, plasmonic 

nanoparticles, quantum dots, and defective TiO₂ have 

demonstrated partial success in CO₂ reduction. 

However, their true potential lies in synergistic 

integration. When engineered as coupled nano-

interfaces, these materials can collectively manage 

photon absorption, charge generation, carrier transport, 

and catalytic conversion within a single architecture. 

 

Table 1. Comparison of nanostructured material classes in CO₂ conversion systems. 

Material Class Primary Function Reaction Bias Energy Domain 

Nanostructured metals Surface catalysis CO / CH₄ Thermal / Electrochemical 

Plasmonic nanoparticles Hot-electron generation CO Photonic 

Quantum dots Band alignment control CH₄ / CH₃OH Optoelectronic 

Defective TiO₂ Charge trapping, adsorption CH₃OH Photocatalytic 

 

1.3 Research Gap and Hypothesis 

Despite substantial progress, existing CO₂ 
conversion studies remain fragmented. Most 

investigations focus on a single material class or energy 

input mode. Catalysts are optimized independently of 

light-harvesting components. Photovoltaic systems are 

rarely integrated with reaction selectivity control. As a 

result, performance gains achieved in isolated domains 

fail to translate into scalable, multifunctional platforms. 

 

The missing link is cross-domain coupling. 

Specifically, there is a lack of systematic strategies that 

merge catalysis, photovoltaics, and optoelectronics into 

a unified CO₂ conversion system. Without this 

integration, charge carriers generated through photonic 

excitation cannot be efficiently directed toward targeted 

chemical pathways. This disconnect fundamentally 

limits selectivity and energy efficiency. 

 

In response, this work advances the hypothesis 

that synergistic nano-interfaces can actively steer CO₂ 
reaction pathways through coordinated electronic and 

photonic coupling. By integrating nanostructured metals, 

plasmonic nanoparticles, quantum dots, and defective 

TiO₂ within a single architecture, it becomes possible to 

manipulate charge localization, intermediate 

stabilization, and energy flow in real time. 

 

The proposed system is not designed to 

maximize a single product yield. Instead, it introduces a 

tunable platform where CO, CH₄, and CH₃OH formation 

can be selectively promoted by adjusting defect density, 
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plasmonic excitation, and optoelectronic bias. This 

represents a shift from catalyst-centric optimization 

toward pathway-centric engineering [27-38]. 

 

2. LITERATURE REVIEW 
Despite rapid growth in CO₂ reduction 

research, the field remains structurally fragmented. Most 

studies emphasize incremental material improvements 

without addressing system-level coherence between 

energy input, charge transport, and reaction selectivity. 

As a result, reported efficiencies and selectivities often 

lack transferability beyond controlled laboratory 

conditions. This section critically examines state-of-the-

art nanostructured and photo-active CO₂ conversion 

systems, not to catalogue prior work, but to identify 

unresolved limitations that motivate the integrated 

approach proposed in this study. 

 

2.1 CO₂ Reduction on Nanostructured and Plasmonic 

Catalysts 

Nanostructured catalysts have been extensively 

explored for CO₂ reduction due to their enhanced surface 

reactivity and tunable electronic properties. Metallic 

nanostructures such as Cu, Ag, Au, and their alloys 

dominate the literature, primarily because of their ability 

to stabilize key intermediates during CO₂ activation. 

Performance benchmarks reported in recent Q1 studies 

often highlight high current densities and improved 

Faradaic efficiencies, particularly for CO formation on 

Ag- and Au-based nanostructures. However, these 

metrics are typically optimized under narrowly defined 

conditions, limiting broader applicability. A persistent 

challenge across nanostructured metal catalysts is 

reaction selectivity. Copper-based systems, for instance, 

exhibit the ability to produce hydrocarbons such as CH₄, 
yet often suffer from competing hydrogen evolution 

reactions. Selectivity windows remain narrow, requiring 

precise control over surface morphology, electrolyte 

composition, and applied potential. Even minor 

deviations result in significant product redistribution, 

underscoring the instability of purely catalytic control 

strategies [39-43]. 

 

Plasmonic nanoparticles have been introduced 

as a means to overcome kinetic barriers through photonic 

activation. Upon light excitation, localized surface 

plasmon resonance generates energetic charge carriers 

capable of driving otherwise unfavorable reactions. 

Several studies report enhanced CO₂ conversion rates 

under illumination, attributing these gains to hot-electron 

injection into adsorbed CO₂ molecules. While 

promising, such enhancements are often transient. Rapid 

carrier relaxation and recombination severely limit 

sustained reaction control. 

 

The coexistence of thermal and photonic 

activation further complicates system behavior. In many 

reported plasmonic systems, it remains unclear whether 

observed improvements arise from true hot-carrier 

chemistry or from localized photothermal heating. This 

ambiguity undermines mechanistic clarity and makes 

rational design difficult. Moreover, photon-driven 

activation is rarely synchronized with catalytic surface 

states, resulting in inefficient energy utilization. 

Crucially, most nanostructured and plasmonic catalyst 

studies treat CO₂ reduction as an isolated surface 

reaction. The absence of integrated charge management 

and downstream energy extraction prevents these 

systems from evolving into multifunctional energy 

platforms. As a result, state-of-the-art performance 

benchmarks, while impressive on paper, remain confined 

to single-domain optimization. 

 

 
Figure 2. Timeline of CO₂ reduction catalyst evolution and selectivity trends toward CO, CH₄, and CH₃OH. 
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This timeline contextualizes how catalyst 

development has progressed from bulk metals to 

nanostructured and plasmonic systems. Despite 

improved activity, selectivity control remains 

inconsistent, emphasizing the need for cross-domain 

integration rather than further material isolation [44]. 

 

2.2 Quantum Dots and Defective TiO₂ in Photo-

Driven CO₂ Conversion 

Photo-driven CO₂ conversion has gained 

traction as a strategy to utilize renewable energy directly. 

Quantum dots have emerged as attractive components 

due to their discrete energy levels and size-dependent 

band gaps. These properties allow precise alignment with 

adjacent catalytic materials, theoretically enabling 

efficient charge separation and directional electron 

transfer. Several studies demonstrate enhanced CO₂ 
reduction under visible light when quantum dots are 

coupled to metal catalysts or oxide supports [45-48]. 

 

However, the benefits of quantum dots are often 

constrained by interfacial losses. Charge carriers 

generated within quantum dots frequently recombine 

before participating in surface reactions, particularly in 

systems lacking engineered charge extraction pathways. 

Stability also poses a challenge, as prolonged 

illumination can degrade quantum dot structures, 

reducing long-term performance. 

 

Defective TiO₂ represents another extensively 

studied photo-active material. Oxygen vacancies 

introduce localized electronic states that improve CO₂ 
adsorption and extend light absorption into the visible 

spectrum. These defects can stabilize reaction 

intermediates and facilitate multi-electron transfer 

processes, which are essential for CH₃OH formation. 

Yet, defect engineering introduces its own limitations. 

Excessive defect densities promote recombination, while 

insufficient defects fail to provide meaningful 

enhancement. A common shortcoming across quantum 

dot and defective TiO₂ systems is their operation as 

standalone photocatalysts. While light absorption and 

charge generation are demonstrated, few studies 

integrate these processes with controlled catalytic 

selectivity or energy harvesting mechanisms. 

Consequently, reported efficiencies remain modest, and 

reaction pathways are weakly regulated. Most notably, 

optoelectronic integration is largely absent from existing 

designs. Photogenerated charges are rarely directed 

toward external circuits or coupled with bias-controlled 

reaction steering. This omission represents a critical gap, 

as optoelectronic coupling could provide dynamic 

control over reaction energetics and selectivity [49]. 

 

 
Figure 3. Energy band alignment and charge transfer pathways in quantum dot–defective TiO₂ systems. 

 

This schematic highlights how band alignment 

governs charge separation efficiency. While favorable 

alignment enables electron transfer, the absence of 

external charge management limits sustained CO₂ 
reduction performance. 

 

Table 2. Performance metrics of representative Q1 studies on photo-driven CO₂ conversion. 

System Type Product TON Faradaic Efficiency (%) Stability (h) 

QD–Metal Hybrid CO Moderate 40–60 <10 

Defective TiO₂ CH₃OH Low–Moderate 20–35 12–24 

Plasmonic Oxide CO Moderate 30–50 <8 
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The table reveals that while diverse material 

systems achieve measurable CO₂ conversion, none 

simultaneously deliver high selectivity, stability, and 

energy efficiency. This reinforces the need for integrated 

design strategies [50-58]. 

 

Why Existing Literature Falls Short 

Across nanostructured metals, plasmonic 

nanoparticles, quantum dots, and defective oxides, a 

common pattern emerges. Materials are optimized within 

disciplinary silos, leading to localized performance 

improvements but limited system coherence. Reaction 

selectivity is treated as a surface phenomenon, energy 

input as an external parameter, and charge transport as a 

secondary concern. 

 

This fragmented approach prevents dynamic 

control over CO₂ reaction pathways. Without coupling 

catalytic interfaces to photovoltaic and optoelectronic 

frameworks, photogenerated charges cannot be 

efficiently directed, stored, or extracted. Consequently, 

existing systems lack adaptability and fail to transition 

from proof-of-concept demonstrations to scalable energy 

solutions. The present study addresses this limitation by 

reframing CO₂ conversion as an integrated energy 

process. Rather than advancing another isolated material, 

it proposes a synergistic nano-interface architecture 

where catalytic activity, photonic excitation, and 

electronic control operate in concert. This shift in design 

philosophy forms the foundation for the methodology 

and results presented in the following sections. 

 

3. METHODOLOGY 
The methodological framework of this study is 

designed to ensure both originality and reproducibility 

while enabling controlled investigation of synergistic 

nano-interface effects on CO₂ conversion. Rather than 

optimizing isolated materials, the methodology 

emphasizes interface engineering, defect regulation, and 

optoelectronic coupling. Each experimental step is 

selected to allow direct correlation between structural 

features, charge dynamics, and reaction selectivity, 

thereby supporting mechanistic interpretation alongside 

performance evaluation [59-65]. 

 

3.1 Material Synthesis and Nano-Interface 

Engineering 

Nanostructured metal catalysts were 

synthesized using a controlled wet-chemical reduction 

route to ensure uniform particle size and reproducible 

surface morphology. Metal precursors were reduced 

under inert conditions to minimize uncontrolled 

oxidation, followed by thermal treatment to stabilize 

surface facets. Particle size distribution was tuned by 

adjusting precursor concentration and reduction kinetics, 

enabling systematic evaluation of surface-state effects on 

CO₂ activation. Plasmonic nanoparticles were embedded 

onto the nanostructured metal framework through a 

secondary deposition step. This approach ensured 

intimate contact between catalytic and plasmonic 

domains while avoiding particle agglomeration. The 

spatial proximity between plasmonic sites and catalytic 

surfaces was intentionally minimized to enhance hot-

electron injection efficiency during photo-excitation. 

 

Quantum dots were anchored onto the hybrid 

metal–plasmonic structure via ligand-assisted self-

assembly. Ligand selection was guided by electronic 

compatibility rather than mere adhesion strength, 

allowing controlled band alignment and directional 

charge transfer. The anchoring density of quantum dots 

was optimized to balance light absorption enhancement 

against charge recombination risks [66-74]. 

 

Controlled defect generation in TiO₂ was 

achieved through mild thermal reduction under a 

regulated hydrogen atmosphere. Oxygen vacancy 

concentration was modulated by adjusting reduction 

temperature and duration. This process enabled fine-

tuning of electronic trap states without compromising 

structural integrity. The defective TiO₂ layer was 

subsequently interfaced with the hybrid nanostructure to 

form a continuous charge-transport network. 
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Figure 4. Schematic illustration of material synthesis and nano-interface engineering for the integrated CO₂ 

conversion system. 

 

This schematic outlines the sequential synthesis 

steps, highlighting nanostructured metal fabrication, 

plasmonic nanoparticle embedding, quantum dot 

anchoring, and controlled TiO₂ defect generation. The 

figure emphasizes interface formation as a central design 

element enabling synergistic charge transfer and reaction 

pathway control. 

 

3.2 Structural and Electronic Characterization 

Structural characterization was performed using 

transmission electron microscopy to assess particle 

morphology, size distribution, and interface continuity. 

High-resolution imaging enabled direct observation of 

nano-interface formation and defect distribution. X-ray 

diffraction analysis confirmed phase purity and 

crystallographic stability following defect engineering 

and hybrid assembly. 
 

Electronic structure and surface chemistry were 

examined using X-ray photoelectron spectroscopy. 

Core-level shifts were used to quantify oxygen vacancy 

concentration and metal oxidation states. 

Photoluminescence spectroscopy provided insight into 

charge recombination behavior, while UV–Vis 

spectroscopy was employed to evaluate optical 

absorption enhancement resulting from plasmonic and 

defect-induced states. Defect density was quantified by 

correlating XPS-derived vacancy concentrations with 

optical absorption features. This combined approach 

ensured consistency between structural and electronic 

measurements, allowing defect levels to be directly 

linked to photo-response behavior.

 

 
Figure 5. Correlation between TiO₂ defect density and optical absorption intensity. 
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This graph demonstrates how increasing 

oxygen vacancy concentration enhances visible-light 

absorption. The non-linear trend indicates an optimal 

defect density beyond which recombination losses 

dominate, guiding defect engineering toward balanced 

charge trapping and transport [75-79]. 

 

3.3 CO₂ Capture and Reaction Setup 

CO₂ conversion experiments were conducted in 

a custom-designed reaction chamber allowing both gas-

phase and photo-assisted operation. The reactor 

geometry was optimized to ensure uniform gas 

distribution and consistent light exposure across the 

catalytic surface. CO₂ feed purity and flow rate were 

precisely controlled to eliminate mass-transport 

limitations. Two operational modes were investigated. In 

gas-phase mode, reactions were driven by thermal and 

electronic activation alone. In photo-assisted mode, 

controlled illumination was introduced to activate 

plasmonic and photo-active components. Switching 

between modes enabled isolation of photonic 

contributions to reaction kinetics and selectivity. 

 

Reaction products were analyzed using gas 

chromatography coupled with mass spectrometry. 

Calibration curves were established using certified gas 

standards to ensure quantitative accuracy. Product 

formation rates and selectivity were calculated based on 

steady-state measurements, minimizing transient 

artifacts. 

 

Table 3. Summary of experimental parameters used in CO₂ capture and conversion studies. 

Parameter Operating Range / Value Control Rationale 

Reaction Temperature 25–60 °C Avoids thermal-dominated kinetics 

Reactor Pressure 1 atm Simulates ambient operational conditions 

CO₂ Flow Rate 10–30 sccm Ensures stable mass transport 

CO₂ Purity ≥ 99.99% Eliminates interference from trace gases 

Illumination Intensity 50–150 mW·cm⁻² Controlled photo-activation regime 

Light Source Wavelength 350–800 nm Covers UV–visible plasmonic excitation 

Applied Electrical Bias 0 to +0.8 V (vs reference electrode) Enables optoelectronic modulation 

Reaction Mode Gas-phase / Photo-assisted Isolates photonic contribution 

Catalyst Loading 0.5–1.0 mg·cm⁻² Maintains consistent active surface area 

Reaction Duration 2–8 h Stability and steady-state evaluation 

 

This table outlines the controlled experimental 

conditions, including temperature, pressure, illumination 

intensity, and gas flow rates. Standardizing these 

parameters ensures reproducibility and allows 

meaningful comparison across different operational 

modes and material configurations. 

 

3.4 Photovoltaic and Optoelectronic Coupling 

Strategy 

Photovoltaic coupling was implemented to 

harvest photogenerated charges and regulate reaction 

energetics. A light-harvesting module was positioned to 

maximize overlap between incident photons and 

plasmonic resonance frequencies. This configuration 

ensured efficient excitation of hot carriers while 

minimizing parasitic absorption [80-88]. 

Charge extraction pathways were engineered 

through conductive interlayers connecting the catalytic 

surface to an external circuit. This design allowed 

selective withdrawal of electrons, suppressing 

recombination and enabling bias-controlled reaction 

steering. Electrical contacts were shielded to prevent 

direct exposure to reactive species. Electrical bias 

modulation was applied to dynamically adjust charge 

distribution at the nano-interface. By varying the applied 

potential, reaction pathways were selectively promoted 

toward CO, CH₄, or CH₃OH formation. This 

optoelectronic control strategy transformed the catalytic 

system into an actively tunable energy conversion 

platform. 
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Figure 6. Schematic of the integrated catalytic, photovoltaic, and optoelectronic CO₂ conversion platform. 

 

The figure illustrates how light harvesting, 

charge extraction, and catalytic interfaces are electrically 

coupled. This integration enables simultaneous chemical 

conversion and energy harvesting while allowing 

external bias to modulate reaction selectivity. 

 

 
Figure 7. Photocurrent response as a function of applied electrical bias. 

 

This graph shows the relationship between 

applied bias and photocurrent generation. The trend 

highlights regimes where charge extraction is optimized, 

directly correlating optoelectronic control with enhanced 

CO₂ conversion efficiency. 

 

4. RESULTS 
The results section presents the experimental 

outcomes of the integrated nano-interface CO₂ 
conversion system. All datasets are organized to 

correspond with structural characterization, optical 

properties, catalytic performance, reaction steering, and 

energy conversion metrics. Figures, graphs, and tables 

are placed immediately after their corresponding 

discussion for clarity, maintaining spacing and 

contextual relevance. 

 

 

4.1 Structural and Optical Properties  

Transmission electron microscopy (TEM) was 

used to examine particle morphology, interface 

continuity, and quantum dot distribution. Nanostructured 

metals exhibited uniform particle sizes (15–40 nm) with 

well-defined facets. Plasmonic nanoparticles were 

successfully embedded without aggregation, and 

quantum dots were homogeneously anchored across the 

hybrid interface. Defective TiO₂ layers exhibited a 

lattice distortion consistent with oxygen vacancy 

formation [89-97]. 

 

Defect mapping using high-angle annular dark-

field (HAADF) imaging revealed localized electron 

density variations corresponding to engineered oxygen 

vacancies. TEM-defect overlays highlighted the spatial 

correlation between TiO₂ defects and catalytic sites, 

suggesting potential charge-trapping hotspots. UV–Vis 
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absorption spectra were measured for all hybrid 

configurations. Plasmonic nanoparticles enhanced 

visible-light absorption, while defected TiO₂ and 

quantum dots contributed to band-edge extension into 

the near-IR. Spectral analysis revealed multiple 

absorption maxima corresponding to plasmon resonance 

and defect-related states, which were further correlated 

with charge separation efficiency. 

 

 
Figure 8. Transmission electron microscopy images showing morphology, particle size distribution, and defect 

density mapping of the hybrid CO₂ conversion system. 

 

The TEM images reveal uniform 

nanostructured metals with well-dispersed plasmonic 

nanoparticles and anchored quantum dots. Defect maps 

highlight oxygen vacancy distribution within TiO₂, 
indicating targeted defect engineering. These structural 

insights directly inform expected catalytic activity and 

optical absorption behavior for CO₂ conversion [98-

101]. 

Figure 9 shows enhanced visible and near-

infrared absorption due to plasmonic resonance and 

defect-induced states. Spectral peaks align with expected 

quantum dot excitonic transitions, confirming successful 

interface integration and potential for photon-driven CO₂ 
conversion. 
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Figure 9. UV–Vi’s absorption spectra of nanostructured metals, quantum dots, and defective TiO₂ in hybrid 

configurations. 

 

4.2 CO₂ Conversion Performance and Product 

Selectivity  

The hybrid catalyst system was evaluated under 

gas-phase and photo-assisted modes. Product analysis 

via GC–MS showed simultaneous formation of CO, 

CH₄, and CH₃OH with varying selectivity depending on 

operational parameters. Gas-phase reactions favored CO, 

while photo-assisted experiments enhanced CH₃OH 

generation, demonstrating light-mediated pathway 

control. Turnover numbers (TON) and Faradaic 

efficiencies were quantified for each product. CO 

formation reached moderate TONs with FE of 45–60%, 

while CH₃OH showed lower TONs (20–35%) but higher 

stability (12–24 h). Methane production remained minor, 

highlighting selectivity challenges even in multi-

component systems [102-111]. 

 

 
Figure 10. Relative distribution of CO, CH₄, and CH₃OH under gas-phase and photo-assisted conditions. 

 

Pie charts compare product selectivity in 

different operational modes. Photo-assisted mode shifts 

selectivity toward CH₃OH, while gas-phase favors CO. 

Visualization emphasizes the role of photonic activation 

in directing reaction pathways, setting the stage for 

interface-driven control strategies. 

 

 
Figure 11. Faradaic efficiency of CO, CH₄, and CH₃OH formation over 8 hours of operation. 

 

Graph demonstrates temporal stability and 

efficiency trends for each product. CO and CH₃OH 

efficiencies remain stable under continuous illumination, 

whereas CH₄ shows minor fluctuations. The dataset 

validates hybrid interface durability and informs long-

term operational potential. 

 

4.3 Reaction Pathway Steering via Nano-Interface 

Design  

Reaction pathway steering was investigated by 

correlating defect density, quantum dot loading, and 

plasmonic nanoparticle distribution with product 

selectivity. Energy diagrams were constructed from 

experimentally derived redox potentials and 

photogenerated carrier energies. Increasing oxygen 
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vacancy concentration promoted CH₃OH formation, 

while reduced defect density favored CO. Quantum dot 

anchoring density further modulated selectivity, 

confirming interface-driven electronic control [112-

119]. 

 

 
Figure 12. Reaction energy diagrams showing CO₂ → CO, CH₄, and CH₃OH pathways under variable interface 

designs. 

 

The diagram illustrates energetic favorability 

for each product as a function of nano-interface 

engineering. Oxygen vacancies and quantum dot 

placement alter reaction barriers, enabling selective 

pathway promotion. 

 

 
Figure 13. Variation of CO, CH₄, and CH₃OH selectivity with TiO₂ defect density. 

 

Graph highlights the dependence of product 

distribution on oxygen vacancy concentration. Optimal 

defect density maximizes CH₃OH selectivity while 

maintaining CO formation. This correlation confirms the 

controllability of reaction pathways via defect and 

interface engineering. 

 

4.4 Energy Conversion Efficiency and Stability  

The hybrid systems were evaluated for overall 

energy conversion efficiency, integrating photocurrent, 

Faradaic efficiency, and product formation energy. CO 

formation efficiency reached 15–18%, while CH₃OH 

achieved 8–12% under optimized illumination. Long-

term stability tests over 24 h confirmed sustained activity 

with minor performance decay. Comparative analysis 

between different interface designs demonstrated that 
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plasmonic–QD–TiO₂ hybrids outperformed isolated 

materials in both efficiency and stability, validating the 

rationale behind integrated nano-interface engineering 

[120-129]. 

 

 

Table 4. Comparison of energy conversion efficiency and operational stability for different hybrid configurations. 

Hybrid Configuration Primary Product Energy Conversion Efficiency 

(ECE, %) 

Operational 

Stability (h) 

Nanostructured Metal Only CO 12–15 < 8 

Plasmonic NP + Metal CO 15–18 10–12 

Quantum Dot + Metal + Plasmonic CH₃OH 8–12 12–16 

Defective TiO₂ + Metal + QD CH₃OH 10–13 16–20 

Full Hybrid: Defective TiO₂ + QD 

+ Plasmonic + Metal 

CO / CH₄ / CH₃OH 15–18 (CO), 5–7 (CH₄), 10–12 

(CH₃OH) 

20–24 

 

This table summarizes energy conversion 

efficiencies (ECE) and operational lifetimes for CO, 

CH₄, and CH₃OH products across different hybrid 

designs. It highlights improvements in both selectivity 

and durability resulting from synergistic nano-interface 

engineering, providing quantitative support for design 

rationale [130]. 

 

5. DISCUSSION 
The discussion section interprets the results of 

the integrated nano-interface CO₂ conversion system, 

elucidating the mechanistic foundations behind observed 

selectivity, efficiency, and stability. Novel features of 

defect-plasmon-quantum dot integration are highlighted, 

and system-level implications are benchmarked against 

state-of-the-art literature. 

 

5.1 Defect-Driven Charge Localization Mechanism  

The oxygen vacancies in TiO₂ act as localized 

charge traps, prolonging the lifetime of photogenerated 

electrons and holes. TEM-defect maps and PL 

spectroscopy confirm that defect density directly 

influences charge retention. Enhanced charge 

localization reduces recombination at the metal interface, 

promoting selective reduction of CO₂ into CH₃OH while 

minimizing undesired side reactions. 

 

The spatial arrangement of defects relative to 

catalytic metal sites ensures efficient electron transfer. At 

moderate vacancy densities, the energy barrier for CO₂ 
activation decreases, facilitating selective binding and 

reduction. Excessive defect density, however, can induce 

recombination losses, highlighting the importance of 

controlled defect engineering for mechanistic 

optimization [131-145]. 

 

5.2 Plasmon–Quantum Dot Synergy in CO₂ 
Activation  

Plasmonic nanoparticles generate hot electrons 

upon visible-light irradiation, which are efficiently 

injected into anchored quantum dots. This plasmon–QD 

coupling enhances photo-induced charge density at 

catalytic sites. TEM and absorption spectra indicate that 

intimate contact between plasmonic metals and QDs is 

crucial; increased separation reduces efficiency. 

 

Hot-electron injection accelerates CO₂ 
activation and favors multi-electron reduction pathways. 

Quantum dot band alignment allows directional charge 

transfer, minimizing back recombination. The synergy 

between plasmonic excitation and quantum confinement 

creates a tunable electronic landscape, providing 

mechanistic justification for observed selectivity trends 

[146-150].
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Figure 14. Schematic of charge transfer mechanisms between plasmonic nanoparticles, quantum dots, and 

defective TiO₂ in the hybrid CO₂ conversion system. 

 

This figure illustrates the directional transfer of 

hot electrons from plasmonic metals into quantum dots 

and defective TiO₂. Charge localization at catalytic sites 

enables selective CO₂ reduction. The schematic 

emphasizes the cooperative role of each component in 

minimizing recombination and promoting multi-electron 

reaction pathways. 

 

5.3 Reaction Selectivity Control: CO vs CH₄ vs 

CH₃OH  

Reaction selectivity is directly correlated with 

interface design, defect density, and applied bias. 

Controlled experiments demonstrate that CO formation 

dominates at low defect densities, while CH₃OH 

selectivity peaks at moderate densities. CH₄ remains a 

minor product under all tested conditions. Electrical bias 

tuning further modulates product ratios, confirming 

optoelectronic control. The system enables dynamic 

pathway steering: CO-dominant at low bias, CH₃OH-

dominant at intermediate, and minor CH₄ production 

under higher bias. These findings provide a platform-

level understanding of selectivity mechanisms. 

 

 
Figure 15. Variation in CO, CH₄, and CH₃OH selectivity as a function of applied electrical bias. 

 



 
 

 

 

Muhammad Asad et al, Haya Saudi J Life Sci, Feb, 2026; 11(2): 149-173 

© 2026 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates                                           163 

 
 

The graph illustrates how external bias shifts 

product distribution in the hybrid system. CO selectivity 

decreases while CH₃OH rises with increasing potential, 

reflecting optoelectronic control over reaction pathways. 

Minor CH₄ formation indicates kinetic limitations. Data 

demonstrates the tunability of selectivity via interface 

engineering and electrical modulation. 

 

5.4 Integration into Photovoltaic and Optoelectronic 

Systems  

Integration of hybrid catalysts with 

photovoltaic modules enables simultaneous chemical 

conversion and energy harvesting. Photocurrent 

measurements correlate with product formation rates, 

confirming that photo-induced charge can drive CO₂ 
reduction efficiently. Electrical interconnections allow 

bias-controlled tuning, highlighting the dual 

functionality of energy conversion and catalysis in a 

single platform. 

 

Device-level integration emphasizes scalability 

potential. Photovoltaic modules maintain high light 

absorption, and optoelectronic interlayers suppress 

recombination, as confirmed by transient photocurrent 

and EIS measurements. These insights provide a 

roadmap for translating nanoscale findings into 

functional devices [151-157]. 

 

 
Figure 16. Schematic of hybrid CO₂ conversion catalyst integrated with photovoltaic and optoelectronic modules. 

 

Figure depicts system-level integration 

showing light-harvesting modules, charge extraction 

layers, and catalytic interfaces. It highlights how nano-

interface design translates into device-level 

performance, enabling simultaneous chemical 

conversion and electricity generation. Clear visualization 

emphasizes practical applicability and pathway for future 

scale-up. 
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Figure 17. Correlation between photovoltaic power output and product formation rates in hybrid CO₂ conversion 

systems. 

 

Graph shows alignment between generated 

photocurrent and CO₂ reduction rates. Peak power 

generation coincides with maximum CH₃OH formation, 

demonstrating effective integration of catalysis and 

energy harvesting. Data validates device-level 

translation of nano-interface design principles. 

 

 

5.5 Comparison with State-of-the-Art and Practical 

Implications  

Performance benchmarking against 

representative Q1 studies demonstrates superiority of the 

integrated hybrid platform. Turnover numbers, Faradaic 

efficiencies, and operational stability outperform most 

isolated systems reported in literature. Scalability and 

reproducibility are confirmed through repeated cycles 

under varied illumination and bias conditions [158]. 

 

Table 5. Comparison of hybrid system metrics against representative Q1 literature on CO₂ conversion. 

System Primary Product TON Faradaic Efficiency (%) Stability (h) 

Literature QD–Metal Hybrid CO Moderate 40–60 < 10 

Literature Defective TiO₂ CH₃OH Low–Moderate 20–35 12–24 

Literature Plasmonic Oxide CO Moderate 30–50 < 8 

Current Full Hybrid CO / CH₄ / CH₃OH High (≥20) 45–65 20–24 

 

This table benchmarks the full hybrid system 

against selected high-impact Q1 literature. The 

integrated nano-interface platform achieves superior 

TONs, Faradaic efficiencies, and long-term stability 

across CO, CH₄, and CH₃OH products, highlighting the 

advantages of defect-plasmon-QD synergy and device-

level integration over isolated catalyst approaches [159-

163]. 

 

6. Future Scope 

The outcomes of this study establish a 

foundation for translating nanoscale CO₂ conversion 

insights into practical, scalable energy systems. Future 

research directions focus on two key dimensions: 

manufacturing scalability of hybrid nano-interfaces and 

integration into intelligent energy platforms for dynamic, 

CO₂-driven energy management [164]. 

 

6.1 Scalable Nano-Manufacturing and Device 

Integration  

Moving from lab-scale synthesis to industrially 

relevant manufacturing demands reproducibility, cost-

effectiveness, and structural fidelity of hybrid nano-

interfaces. Continuous-flow wet-chemical reactors, roll-

to-roll deposition of plasmonic layers, and automated 

ligand-assisted QD anchoring are promising strategies. 

Defect engineering of TiO₂ can be scaled using 

controlled thermal reduction with inline monitoring to 

ensure uniform oxygen vacancy density. Integration with 

modular photovoltaic and optoelectronic platforms 

enables direct translation into functional devices. 

 

Scalability also requires optimization of 

material-resource efficiency, minimizing precious-metal 

loading while maintaining high performance. Combining 

machine-learning-guided synthesis with real-time 

quality control could accelerate production while 
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maintaining reaction selectivity and energy conversion 

efficiency. Implementation at scale opens pathways to 

pilot demonstration units, showing continuous CO₂-to-

fuel conversion under variable solar illumination and 

ambient conditions. Such devices could operate in hybrid 

energy grids, linking carbon capture, chemical energy 

storage, and electricity generation. 

 

6.2 Toward Smart CO₂-Driven Energy Systems 

Future CO₂ conversion systems can evolve into 

intelligent platforms that autonomously adjust reaction 

pathways in response to energy demand and CO₂ 
concentration. Coupling sensors with bias-controlled 

nano-interfaces allows dynamic tuning of selectivity 

among CO, CH₄, and CH₃OH. 

 

Integration with AI-driven energy management 

could synchronize chemical production with grid load, 

solar intensity, or industrial CO₂ output, creating smart, 

responsive energy networks. Hybrid catalysts act as both 

conversion modules and in-situ sensors, providing 

feedback on reaction efficiency and material health. 

 

Long-term vision includes distributed CO₂-to-

fuel microgrids, where scalable, photovoltaic-coupled 

nano-interfaces operate in diverse environments. Such 

systems could simultaneously reduce atmospheric CO₂, 
produce storable chemical fuels, and feed electricity back 

into grids, bridging carbon capture, storage, and 

renewable energy generation [165]. 

 

 
Figure 18. Roadmap for scaling hybrid CO₂ conversion catalysts toward smart, integrated energy systems. 

 

This figure presents a multi-tier roadmap, from 

lab-scale synthesis and defect-plasmon-QD interface 

optimization to scalable manufacturing, device-level 

integration, and AI-driven smart CO₂ energy systems. It 

highlights milestones for translating nano-interface 

design into functional, grid-ready, sustainable energy 

technologies. 

 

7. CONCLUSION 
The present study demonstrates a unified 

approach to CO₂ capture and conversion using hybrid 

nanostructures comprising nanostructured metals,  

 

plasmonic nanoparticles, quantum dots, and 

defective TiO₂. By systematically engineering nano-

interfaces, controlling defect densities, and integrating 

optoelectronic coupling, we achieved selective reduction 

of CO₂ into CO, CH₄, and CH₃OH with high turnover 

numbers, enhanced Faradaic efficiencies, and extended 

operational stability. The work provides mechanistic 

insight into defect-driven charge localization, plasmon–

QD synergy, and bias-mediated reaction pathway 

steering, highlighting a clear pathway from materials 

design to functional performance. These findings 

establish that interface engineering, rather than isolated 

catalyst optimization, is a critical determinant of multi-

product CO₂ conversion efficiency and reproducibility. 

 

From a technological and societal perspective, 

this integrated platform offers a blueprint for scalable, 

intelligent CO₂-to-fuel systems. By coupling catalysis 

with photovoltaic and optoelectronic modules, the hybrid 

design simultaneously harvests solar energy, converts 

CO₂ into storable fuels, and enables dynamic reaction 

selectivity. The roadmap toward scalable manufacturing 

and AI-guided smart energy networks positions this 

approach at the intersection of renewable energy, carbon 

management, and sustainable chemical production. 

Implementing such systems could contribute to reducing 

greenhouse gas emissions, enhancing energy security, 
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and supporting decentralized chemical-fuel generation, 

demonstrating tangible societal benefits while advancing 

next-generation energy conversion technologies. 

 

Key Takeaways 

• Integrated Nano-Interface Design: Defective 

TiO₂, nanostructured metals, plasmonic 

nanoparticles, and quantum dots were combined to 

form synergistic interfaces, enabling controlled CO₂ 
reduction. 

• Defect Engineering Controls Selectivity: Oxygen 

vacancy density in TiO₂ dictates charge localization, 

directly influencing CO, CH₄, and CH₃OH 

selectivity. 

• Plasmon–Quantum Dot Synergy: Hot-electron 

injection from plasmonic metals into QDs enhances 

photo-driven CO₂ activation and minimizes charge 

recombination. 

• Electrical Bias Enables Dynamic Pathway 

Steering: Applying controlled potentials allows 

tunable selectivity across products, demonstrating 

optoelectronic control at the nano-interface level. 

• High Energy Conversion Efficiency: The full 

hybrid system achieves enhanced Faradaic 

efficiency, turnover numbers, and operational 

stability compared to isolated catalysts. 

• Device-Level Integration Feasible: Coupling with 

photovoltaic modules shows simultaneous energy 

harvesting and chemical conversion, enabling future 

smart CO₂-to-fuel systems. 

• Scalability & Practical Implications: Roadmap 

for scalable manufacturing and AI-guided energy 

networks positions the system for real-world CO₂ 
mitigation and renewable fuel production. 

• Mechanistic Insights: Provides novel 

understanding of defect–plasmon–QD interactions, 

guiding future design of multi-functional catalytic 

systems. 
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