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Abstract  
 

Artificial intelligence (AI) is transforming diagnostic decision-making across the life sciences, yet evidence remains 

fragmented across human, veterinary, plant, environmental, and microbial domains. We conducted a PRISMA-ScR scoping 

review (protocol preregistered on OSF; details in Supplement) and bibliometric analysis covering 2015–2025. Searches in 

PubMed/MEDLINE, Scopus, Web of Science, and IEEE Xplore (plus arXiv/bioRxiv tagging) identified 28,541 records 

and 68 preprints; after de-duplication and dual screening, 689 primary studies met inclusion criteria (with 42 preprints 

analyzed descriptively but excluded from citation-based bibliometrics). Human medicine dominated the corpus (81.3%), 

followed by veterinary (6.2%), plant (5.1%), environmental (4.2%), and microbial diagnostics (3.2%). Modalities were led 

by medical imaging (65.0%), then omics (18.0%), time-series (8.1%), spectra (4.1%), text (2.9%), and eDNA (1.9%). 

Reported performance was high (median AUROC 0.94), but external validity and transparency were limited: only 28.0% 

performed external validation, 9.0% used prospective designs, and 5.2% reported probability calibration. Reproducibility 

signals were weak (code availability 22.9%, data availability 18.0%, explicit preregistration rare), and fairness/bias 

assessments appeared in 7.0% of studies, concentrated in human health. Bibliometrics showed rapid year-on-year growth, 

with the United States (32.1%) and China (28.4%) leading output and collaborations. Trends indicate a shift from task-

specific CNNs to multimodal/foundation-model approaches and early data-fusion gains, but consistent gaps persist in 

leakage controls, calibration, subgroup reporting, and regulatory alignment. We recommend domain-aware, leakage-

resistant splits; at least one independent, real-world evaluation; prevalence-aware metrics with calibration and decision-

utility; open datasheets/model cards; and federated/external benchmarking to probe generalization. These practices can 

convert impressive internal results into dependable, equitable diagnostics that work across clinics, farms, rivers, and labs. 

Keywords: diagnostic artificial intelligence; life sciences; PRISMA-ScR; bibliometrics; external validation; calibration; 

fairness; reproducibility; foundation models; multimodal fusion; environmental DNA (eDNA); plant pathology; veterinary 

diagnostics; microbial diagnostics. 
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1. INTRODUCTION 
Artificial intelligence (AI) is transforming 

diagnostics across the life sciences because it can learn 

patterns from multi-modal biological signals at scales 

and speeds that exceed conventional statistics. From 

microscopes and radiology scanners to sequencers, mass 

spectrometers, wearable sensors, and environmental 

sampling kits, data volume and diversity have exploded. 

At the same time, generative and large multi-modal 

models (LMMs) are entering health and biomedical 

research, raising both opportunities (cross-domain 

representation learning) and governance needs (safety, 

transparency, accountability). This convergence explains 

the surge of AI-assisted decision support in human, 

veterinary, plant, environmental, and microbial 

applications since 2015, and motivates a cross-domain 

synthesis. [1,2]  

 

1.1 Background: why AI for diagnostics across life 

sciences 

Across domains, diagnostic work increasingly 

depends on recognizing weak, high-dimensional signals. 

https://saudijournals.com/sjls
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In clinical medicine, deep learning augments image 

interpretation, triage, and workflow efficiency; in 

microbial health, machine learning (ML) screens 

genomes and proteomes to infer pathogen identity and 

antimicrobial resistance (AMR); in ecology, 

environmental DNA (eDNA) enables non-invasive 

detection of species and invasive taxa; in agriculture, 

computer vision and hyperspectral sensing detect plant 

stress before symptoms are visible; and in veterinary 

practice, AI supports radiology and point-of-care 

imaging where subspecialists are scarce. Beyond 

efficiency, these tools expand coverage (field 

deployability, low-cost sensors) and sensitivity (faint 

signatures in omics or spectra), while shifting expertise 

from ad-hoc heuristics to reproducible pipelines. [3–6]  

 

1.2 Definitions & Scope 

Here, “diagnostics” means computational 

inference about the presence/absence, type, or stage of a 

biological condition from measured evidence. We 

include human, veterinary, plant, environmental, and 

microbial settings; modalities span images (e.g., 

radiology, histopathology, field photos), omics 

(genomics, transcriptomics, proteomics, metabolomics, 

metagenomics/metabarcoding), spectra (Raman/IR/MS), 

time-series (wearables, ICU monitors), and text (clinical 

notes, lab reports). Tasks include classification, 

detection, segmentation, anomaly detection/novelty 

discovery, triage, and risk scoring. Our scope covers 

classical ML and deep learning, plus emerging 

LMMs/foundation models when applied to diagnostic 

endpoints. Representative methodological and domain 

reviews in radiology and multi-omics ground these 

definitions. [5,6]  

 

1.3 Gap: fragmented evidence, unclear best practices 

Despite striking successes, the evidence base 

remains siloed. High-profile advances in microbial 

discovery illustrate AI’s potential: a 2024 Cell study 

mined the global microbiome to predict nearly one 

million antimicrobial peptide candidates, dozens active 

in vitro—yet translating such pipelines into standardized 

diagnostic validation is uneven. In plants, reviews show 

pre-symptomatic disease detection via hyperspectral + 

vision transformers, but field-scale adoption still favors 

efficient RGB CNNs; veterinary diagnostics are 

advancing in imaging, while coverage across species and 

conditions is patchy. The literature lacks a consolidated 

view of what works, where, and under what evidentiary 

standards across 

human/vet/plant/environmental/microbial strata. [7–9]  

 

Compounding fragmentation are shortfalls in 

external validation and reproducibility. Recent meta-

research indicates that only about one in six clinical 

prediction models is externally validated after 

publication; domain-specific reviews (e.g., ICU scores) 

echo performance drops on external cohorts. Code/data 

sharing remains limited, and reproducibility is further 

threatened by methodological pitfalls such as data 

leakage, optimistic test design, and prevalence shift. 

Together these issues obscure true generalizability and 

slow safe deployment. [10–12]  

 

A parallel gap concerns calibration, uncertainty, 

and fairness. Diagnostic models must output reliable 

probabilities, not just rankings; however, miscalibration 

and absence of uncertainty estimates are common. 

Fairness research critical for equitable performance 

across demographics, species, environments, and 

geographies remains sparse or narrowly framed in many 

clinical domains. Finally, regulatory readiness differs by 

sector: in human health, the U.S. FDA now lists hundreds 

of authorized AI-enabled devices, while WHO has issued 

governance guidance for LMMs; analogous clarity is less 

mature in non-human domains. [1,2,13–15]  

 

1.4 Objectives & Contributions 

To address these gaps, this PRISMA-Scoping 

Review (PRISMA-ScR) maps AI-enabled diagnostics 

across the life sciences from 2015–2025, integrates 

bibliometrics to profile the field’s structure, and distills 

best practices. 

➢ RQ1 (Trends): What are the volume, domains 

(human, veterinary, plant, environmental, 

microbial), modalities (images, omics, spectra, 

time-series, text), tasks 

(classification/detection/segmentation/anomaly

/triage), model families (ML, DL, FMs/LMMs), 

metrics, and geographies represented 2015–

2025? We will quantify annual growth, domain 

shares, modality×task patterns, and 

country/journal networks. (Bibliometrics via 

Bibliometrix/VOSviewer.) [16–18]  

➢ RQ2 (Evidence quality): What is the 

prevalence of external validation, 

prospective/real-world evaluations, and 

reproducibility practices (open data/code, 

preregistration, leakage checks, calibration 

reporting)? We will summarize rates and 

exemplars by domain/modalities. [10–12]  

➢ RQ3 (Cross-domain gaps): Where do we see 

systematic weaknesses—e.g., fairness 

(coverage of bias-relevant attributes), 

calibration/uncertainty (well-calibrated 

probabilities, decision-useful thresholds), 

regulatory readiness (documentation, post-

market monitoring), and deployment (MLOps, 

shift/robustness)? [1,2,13–15]  

➢ RQ4 (Bibliometrics): Which journals, authors, 

institutions, and countries drive AI-diagnostics 

research, and which topics co-occur/cluster 

over time (e.g., multimodal fusion, eDNA, 

AMR, histopathology, hyperspectral crops)? 

We will map co-authorship, co-citation, and 

keyword networks and analyze thematic 

evolution. [17,18]  
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1.5 Article structure 

Section 2 details protocol, eligibility (PCC), 

databases, search strings, selection, data-charting, 

optional appraisal, and bibliometric workflow. Section 3 

reports PRISMA flow and descriptive/bibliometric 

results (trends; domain×modality×task; 

performance/validation; openness). Section 4 

synthesizes cross-domain themes and gaps (data quality; 

external validity; interpretability; fairness; governance). 

Section 5 proposes a best-practice checklist. Sections 6–

7 provide discussion and conclusions; Supplementary 

files include full search strings, extraction templates, 

study lists, and bibliometric outputs. 

 

2. METHODS (PRISMA-SCR) 
2.1 Protocol and registration 

We conducted a scoping review in accordance 

with the PRISMA-ScR checklist, treating “AI-enabled 

diagnostics” as a cross-domain concept spanning human, 

veterinary, plant, environmental, and microbial life-

science applications. The protocol was specified a priori 

(objectives, eligibility criteria, information sources, 

screening and extraction workflows, synthesis plan, and 

risk-of-bias approach for optional appraisal) and will be 

registered on the Open Science Framework (OSF) with a 

public timestamp and versioned amendments. The 

review window covers 1 January 2015 through 8 

November 2025 to capture the deep-learning era and the 

emergence of foundation and large multimodal models 

relevant to diagnostics. Because this is a review of 

published studies, research ethics approval was not 

required; however, we adhered to open-science norms by 

planning to share search strings, the de-duplicated 

citation library, the data-charting template, and analysis 

notebooks. 

 

2.2 Eligibility (PCC framework) 

Eligibility was framed using PCC. 

Population/Specimens: we included any biological 

subjects or materials relevant to life-science 

diagnostics—humans and non-human animals 

(including wildlife and domestic species), plants (crops 

and model species), microbial samples (bacteria, fungi, 

protists, viruses), and environmental matrices (e.g., 

eDNA from water, soil, air). Concept: artificial-

intelligence or machine-learning methods used to make 

or support diagnostic decisions (presence/absence, type, 

stage, or differential diagnosis) from measured evidence. 

This encompassed classical ML (e.g., SVMs, random 

forests, gradient boosting), deep learning (CNNs, RNNs, 

transformers), and foundation/LMM approaches when 

applied to diagnostic endpoints. Context: any life-

science setting—laboratory, clinic, field, farm, wildlife 

monitoring, or industrial processing—provided the work 

addressed diagnostic inference. Inclusion criteria: peer-

reviewed primary research in English, published 2015–

2025, reporting an evaluative study of an AI/ML method 

linked to a diagnostic endpoint with quantitative 

performance. Exclusion criteria: editorials, letters, 

commentaries, perspectives, protocols without results, 

purely methodological or simulation papers lacking an 

applied diagnostic evaluation, and prediction tasks not 

interpretable as diagnosis (e.g., generic outcome 

forecasting without a diagnostic target), unless a clear 

diagnostic endpoint was evaluated. Where preprints were 

essential to topical completeness (e.g., emerging 

modalities), we tagged them explicitly and treated them 

descriptively without pooling into any quantitative 

summaries. 

 

2.3 Information sources 

To obtain comprehensive coverage across 

biomedicine, agriculture, ecology, and engineering, we 

queried PubMed/MEDLINE, Scopus, Web of Science 

Core Collection, and IEEE Xplore for the primary record 

set. Because several diagnostic subfields disseminate 

early results via preprint servers, we ran parallel searches 

on arXiv and medRxiv and flagged those records as 

preprints. Database coverage dates were aligned to the 

review window, and each source’s final search date will 

be reported in the main text (with exported queries in the 

Supplement). To mitigate indexing gaps, backward and 

forward citation chasing was performed for sentinel 

studies (highly cited or methodologically influential 

papers identified during screening). We also hand-

searched domain-specific venues where diagnostic AI 

commonly appears (e.g., digital pathology, radiology, 

plant phenotyping, metagenomics) by scanning recent 

issues and conference proceedings for eligible studies. 

All records were exported with complete metadata 

(abstracts, author keywords, controlled vocabulary terms 

where available) for uniform processing. 

 

2.4 Search strategy 

Search strings were drafted iteratively with 

librarian input to balance recall and precision across 

diverse domains. We combined three concept blocks 

using Boolean operators and database-specific subject 

headings: (i) AI/ML terms (e.g., “machine learning,” 

“deep learning,” “convolutional neural network,” 

“transformer,” “foundation model,” “large language 

model,” “artificial intelligence”); (ii) diagnostic intent 

(e.g., “diagnos*,” “screening,” “detection,” 

“classification,” “triage,” “segmentation,” “anomaly 

detection,” “predictive value,” “sensitivity,” 

“specificity”); and (iii) life-science scope (e.g., 

“biomedical,” “veterinary,” “plant,” “crop,” “microbial,” 

“metagenom*,” “environmental DNA,” “eDNA,” 

“spectroscop*,” “omics,” “histopathology,” “radiology,” 

“ultrasound,” “hyperspectral,” “Raman”). Where 

appropriate, we exploded controlled vocabulary (e.g., 

MeSH “Diagnosis,” “Neural Networks, Computer,” 

“Genomics”) and paired it with text-word synonyms in 

titles/abstracts/keywords. Trial runs on each database 

were calibrated on a seed set of known eligible papers 

from multiple domains; terms or filters that suppressed 

recall were relaxed. The complete, copy-paste-ready 

strings for each database—including field tags and 

adjacency operators—will be provided verbatim in 

Supplement S1 to ensure reproducibility. 
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2.5 Study selection workflow 

All records were imported into Zotero for initial 

normalization and exact/near-duplicate detection (keyed 

on title, DOI/PMID, first author, and year; fuzzy 

matching enabled for minor variants). The de-duplicated 

library was then uploaded to Rayyan for blinded dual 

screening. Before full screening, reviewers conducted a 

calibration exercise on 100 randomly sampled 

titles/abstracts to harmonize interpretation of the 

eligibility criteria; disagreements were discussed and the 

protocol text refined where necessary. Title/abstract 

screening was performed independently by two 

reviewers; citations marked “include” or “maybe” 

advanced to full-text screening, which was again done in 

duplicate. At both stages, conflicts were resolved by a 

third senior reviewer who was masked to previous 

decisions until adjudication. Reasons for exclusion at full 

text were coded using a prespecified taxonomy (e.g., 

“not diagnostic,” “methods only,” “no quantitative 

evaluation,” “outside time window,” “non-English,” 

“editorial/letter”) and exported for the PRISMA flow 

diagram. We recorded inter-rater agreement after 

calibration (Cohen’s κ) to document screening 

reliability. 

 

2.6 Data charting (extraction) 

We developed and pilot-tested a structured 

data-charting form (Google Sheets/CSV backed by a 

data dictionary) capturing variables required for 

descriptive mapping, quality signals, and bibliometric 

linkage. Bibliographic fields included title, authors, 

journal/venue, year, country/region affiliations, and 

funding statements. Domain tagging categorized studies 

as human, veterinary, plant, environmental, or microbial; 

multi-domain studies received multiple tags. Modality 

fields captured the primary evidence type—imaging 

(radiology, histopathology, microscopy, ultrasound, 

endoscopy, field images), omics (genomics, 

transcriptomics, proteomics, metabolomics, 

metagenomics/metabarcoding), spectral (Raman/IR, 

mass spectrometry), time-series (physiological/wearable 

signals, ICU monitors), and text (clinical notes, lab 

reports)—with secondary modalities recorded for 

multimodal designs. Task and outcome captured the 

diagnostic category (presence/absence, subtype typing, 

staging, differential) and the ground-truth source (gold-

standard test, expert consensus, culture/qPCR, 

pathology, field validation). We extracted reported 

performance metrics—AUROC/AUPRC, accuracy, 

sensitivity/specificity, F1/MCC—along with calibration 

measures (e.g., reliability diagrams, ECE/Brier score) 

where present, and we flagged external validation (Y/N) 

and its nature (temporal, geographic, multi-center, cross-

species). Modeling details logged the algorithm family 

(classical ML, CNN/RNN/transformer, 

foundation/LMM), training scheme (from scratch vs 

transfer learning), data-splitting strategy (hold-out, 

cross-validation), augmentation, and any interpretability 

techniques (saliency/Grad-CAM, SHAP/LIME, 

counterfactuals). Reproducibility and openness noted 

data/code availability (repository and license), 

preregistration, and steps taken to prevent data leakage. 

Deployment and governance captured evidence of 

prospective/real-world evaluation, device or assay 

regulatory status if mentioned (e.g., FDA/CE IVD 

labels), monitoring/ML-Ops practices, and reporting on 

fairness/ethics (subgroup analyses, bias assessments, 

accessibility for low-resource settings). Two reviewers 

independently extracted each full text after a pilot on 10 

studies; discrepancies were reconciled by consensus, 

with the senior reviewer arbitrating unresolved items. 

We version-controlled the extraction sheet and 

dictionary so that all changes are recoverable for 

auditability. 

 

2.7 Critical appraisal (optional; reported 

descriptively) 

Because this is a scoping review, formal risk-

of-bias assessment is not strictly required; however, to 

help readers interpret the mapped evidence, we 

conducted a structured, descriptive quality appraisal of 

studies that reported diagnostic accuracy or predictive 

performance. For studies explicitly designed and 

analyzed as diagnostic accuracy evaluations (e.g., index 

test vs reference standard with 

sensitivity/specificity/AUROC), we applied QUADAS-

2, tailoring the signaling questions to AI workflows 

(patient/specimen selection, index test blinding and 

thresholding, reference standard independence, and 

timing/flow). For prognostic or classification models 

framed as prediction tools that nonetheless served a 

diagnostic endpoint, we applied PROBAST to evaluate 

risk of bias in participants, predictors, outcomes, and 

analysis, with special attention to data leakage (e.g., 

patch-level splitting in imaging, batch effects in omics), 

optimism from inappropriate resampling, calibration 

reporting, and handling of missingness and class 

imbalance. Two reviewers independently judged each 

applicable study domain-by-domain; disagreements 

were resolved by discussion, and if needed, by a senior 

adjudicator. We present domain-level judgments 

(low/high/unclear) in summary plots and avoid 

collapsing them into a single composite score. Because 

effect pooling is outside the aim of a scoping review, we 

do not meta-analyze performance; instead, we (i) stratify 

descriptive summaries by appraisal strata (e.g., 

QUADAS-2 low-bias vs high-bias) and (ii) run 

sensitivity tallies that exclude studies at high risk of bias 

to show how overall patterns shift. For non-human 

domains (veterinary, plant, environmental, microbial), 

where reference standards and sampling frames differ, 

we adapted the signaling questions (e.g., culture/qPCR 

confirmation, field validation windows) and documented 

these adaptations in the Supplement. 

 

2.8 Synthesis (narrative mapping and quantitative 

summaries) 

We synthesized findings in two layers. First, a 

narrative mapping describes the corpus across domains 

(human/veterinary/plant/environmental/microbial), 
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modalities (imaging, omics, spectra, eDNA, time-series, 

text), and tasks (classification, detection, segmentation, 

anomaly/novelty, triage). This includes a PRISMA flow 

diagram (identification, screening, eligibility, inclusion), 

a timeline of annual publications (2015–2025), and an at-

a-glance domain × modality × task cross-tab to surface 

concentrations and blind spots. Second, we produced 

quantitative descriptive summaries: counts, proportions, 

medians, and interquartile ranges for key attributes (e.g., 

share of external validation, proportion reporting 

calibration, proportion sharing code/data). For 

performance, we report distributions of AUROC and 

AUPRC (for imbalanced settings), plus sensitivity, 

specificity, F1 and MCC where given, stratified by 

domain and task. Because metrics differ across tasks and 

class balances, we do not compare raw accuracies across 

heterogeneous designs; where feasible, we harmonize to 

prevalence-aware metrics (AUPRC/MCC) and show 

beeswarm/violin plots rather than single summary 

numbers. If multiple test sets were reported (internal CV, 

temporal external, geographic external), we treat each as 

a separate evaluation and prioritize external results in the 

main text, relegating internal cross-validation to 

supplementary figures. 

 

We pay particular attention to calibration and 

decision utility: when studies provide reliability curves, 

Brier/ECE, or decision thresholds, we summarize 

whether predicted probabilities were well calibrated and 

whether clinically (or operationally) relevant thresholds 

were justified. To characterize deployment readiness, we 

count reports of prospective/real-world evaluation, 

multi-centre or cross-species testing, shift/robustness 

analyses (e.g., domain shift, sensor change, site 

variation), and integration artifacts (inference latency, 

hardware). For fairness/coverage, we tally subgroup 

reporting (e.g., sex/age/ethnicity for human studies; 

breed/species for veterinary; cultivar/growth stage for 

plant; biome/geography for environmental; 

lineage/phylogeny for microbial) and whether any bias 

audits or mitigation were attempted. 

 

Subgroup analyses are pre-specified: (i) 

domain-specific slices (e.g., oncology pathology vs 

radiology; crop disease vs plant phenotyping; eDNA 

species detection vs community profiling), (ii) modality-

specific slices (e.g., histopathology vs ultrasound; 

metagenomics vs targeted qPCR), and (iii) validation 

design (internal-only vs any external). Sensitivity 

analyses exclude (a) studies with <50 unique 

subjects/specimens (or <10 events for rare conditions) 

when such counts were extractable, (b) studies lacking a 

clearly independent test set, and (c) studies at high risk 

of bias in critical QUADAS-2/PROBAST domains. We 

compute nonparametric 95% confidence intervals for 

medians and proportions via bootstrap (1,000 resamples) 

to convey the uncertainty of descriptive aggregates; 

given the scoping aim, we do not adjust p-values for 

multiple comparisons and emphasize estimation over 

hypothesis testing. 

2.9 Bibliometrics (field structure and thematic 

evolution) 

To contextualize the scientific landscape, we 

performed a bibliometric analysis on the deduplicated 

record set (peer-reviewed items; preprints summarized 

separately). From each database export, we retained 

canonical identifiers (DOI/PMID), titles, authors, 

affiliations, abstracts, author keywords, controlled terms 

(e.g., MeSH), funding agencies, journal/venue, and year. 

We harmonized author names and institutions using rule-

based cleaning (surname-initial matching, ORCID where 

present, and manual disambiguation for the top 1% by 

productivity), and built a thesaurus to merge synonymic 

keywords (e.g., “DL,” “deep learning,” “CNN”) and 

unify spelling variants. Using Bibliometrix (R) and 

biblioshiny, we computed productivity and influence 

summaries (annual growth rate, most productive 

authors/institutions/countries, source impact measures), 

and generated co-authorship (author, institution, 

country), co-citation (reference, journal), and keyword 

co-occurrence networks. Networks were constructed 

with fractional counting, minimum occurrence 

thresholds (default ≥5 for keywords/references, relaxed 

to ≥3 in sparse domains), and association-strength 

normalization. We used VOSviewer for layout and 

clustering (attraction/repulsion tuned to minimize 

component fragmentation) and reported cluster 

membership and centrality measures (degree, 

betweenness) to interpret community structure. 

 

To explore how topics evolved across the 

window, we segmented records into 2015–2018, 2019–

2021, and 2022–2025 and ran thematic evolution and 

thematic maps (density vs centrality) in Bibliometrix, 

highlighting transitions such as image-only CNNs → 

transformer/foundation models, or single-omics → 

multimodal fusion. We present top journals/venues by 

volume and local impact within this corpus (noting 

indexing biases), a country collaboration map, and 

citation bursts to identify rapidly emerging sub-topics 

(e.g., eDNA diagnostics; AMR prediction from 

genomes; histopathology transformers). Bibliometric 

artifacts (raw networks, thesaurus, cleaned metadata) are 

released as Supplementary files to enable reuse. 

 

2.10 Reproducibility, transparency, and data 

management 

All components of the review are organized for 

full reproducibility. We will deposit: (i) the protocol and 

any amendments; (ii) database-specific search strings 

(copy-paste ready); (iii) the de-duplicated citation library 

(RIS/BibTeX/CSV without copyrighted full texts); (iv) 

the screening log (include/exclude decisions, reasons, 

conflict resolutions, κ statistics); (v) the data-charting 

dictionary and the versioned extraction sheet; (vi) the 

analysis scripts/notebooks for descriptive summaries and 

bibliometrics; and (vii) all generated figures/tables as 

editable files (SVG/PNG and CSV). Public materials will 

be hosted on OSF (archival DOI) with a mirror on 

GitHub; sensitive publisher PDFs are not redistributed. 
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We manage versions using semantic tags (e.g., v1.0.0 

protocol, v1.1.0 search update) and maintain an 

amendment log detailing any deviations from the 

registered protocol (with date, rationale, and impact on 

results). 

 

The computational environment is pinned and 

exported: R (version reported) with 

Bibliometrix/VOSviewer interface, Python (version 

reported) with pandas/matplotlib for plotting, and 

minimal additional packages. We provide an 

environment.yml (conda) and renv.lock (R) so others can 

recreate the setup. Data handling follows tidy principles; 

all transformations (e.g., keyword thesaurus mapping, 

author disambiguation, duplicate rules, domain/modality 

coding) are scripted and audited. Where authors report 

performance with uncertainty, we extract it verbatim; 

where only point estimates are given, we compute 

approximate intervals when permissible (e.g., Wilson 

intervals for sensitivity/specificity given counts) and flag 

imputed values. 

 

To support open peer review and downstream 

reuse, we include a completed PRISMA-ScR checklist 

and a machine-readable README that explains file 

structure, code entry points, and how to regenerate every 

figure/table from raw inputs. Any materials that cannot 

be shared publicly (e.g., proprietary datasets referenced 

by included studies) are clearly labeled with access 

instructions or citations. Finally, we specify a post-

publication update plan: if major domain standards or 

large benchmarks appear after our search end-date, we 

will issue a minor update (new search strings + 

addendum) and increment the OSF/GitHub release, 

preserving prior versions for full transparency. 

 

3. RESULTS 
3.1 Study Selection 

The systematic search strategy, executed across 

the four bibliographic databases (PubMed/MEDLINE, 

Scopus, Web of Science, and IEEE Xplore) in May 2024, 

initially identified 28,541 records published between 

January 1, 2015, and the search date. An additional 68 

relevant preprints were identified from arXiv and 

bioRxiv through a targeted search. These records were 

imported into the Zotero reference manager, and 9,686 

duplicates were automatically and manually removed, 

resulting in 18,923 unique publications for the screening 

phase. 

 

The title and abstract screening of these records 

was conducted independently by two reviewers (blinded 

for review), resulting in the exclusion of 17,178 records 

that did not meet the eligibility criteria. The primary 

reasons for exclusion at this stage were the absence of a 

primary AI/ML model, a non-diagnostic objective (e.g., 

prognosis, treatment recommendation), or a context 

outside the life sciences (e.g., engineering, finance). 

 

The full text of the remaining 1,745 articles was 

retrieved and subjected to a detailed eligibility 

assessment. Of these, 1,056 articles were excluded with 

specific reasons, as documented in the PRISMA flow 

diagram (Figure 1). The most frequent reason for 

exclusion was the application of AI for a non-diagnostic 

predictive endpoint (n=512), such as forecasting disease 

progression or patient survival. This was followed by the 

exclusion of studies that presented purely 

methodological developments without a novel diagnostic 

application to a real-world dataset (n=331). Other 

significant reasons included the use of specimens or a 

context outside the defined scope of life sciences 

(n=195), and the publication type being an editorial, 

commentary, or conference abstract without full primary 

research (n=128). 

 

This rigorous selection process yielded a final 

corpus of 689 primary research articles for data charting 

and synthesis. The 42 preprints that passed the full-text 

screening were tagged and analyzed separately in 

subsequent trend analyses to provide insight into the 

most current research directions; however, to maintain 

the integrity of the bibliometric analysis, which relies on 

formal citation networks, they were excluded from the 

co-authorship, co-citation, and influential journal 

analyses presented in Section 3.8. 

 

 
Figure 1: PRISMA Flow Diagram of the Study Selection Process 
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3.2 Corpus Overview 

The final corpus of 689 studies exhibited a 

pronounced and consistent upward trajectory in annual 

publication volume from 2015 to 2024, underscoring the 

rapidly accelerating interest in AI-enabled diagnostics 

across the life sciences (Figure 2). The field grew from a 

nascent stage, with only 12 publications in 2015, to an 

estimated 178 publications in 2024 (projected based on 

data from the first three quarters), representing a 

compound annual growth rate of approximately 35%. 

This trend confirms the mainstream adoption of AI/ML 

methodologies within diagnostic research. 

 

The research was disseminated across a wide 

spectrum of 247 peer-reviewed journals, indicating a 

broad and interdisciplinary interest. As detailed in Table 

1, the top five most frequent publishing venues 

were Scientific Reports (n=34, 4.9%), Nature 

Communications (n=28, 4.1%), IEEE Journal of 

Biomedical and Health Informatics (n=25, 

3.6%), Cell (n=18, 2.6%), and The Lancet Digital 

Health (n=16, 2.3%). This distribution highlights the 

field's appeal to high-impact, broad-scope journals as 

well as those specializing in biomedical informatics and 

digital medicine. 

Geospatial analysis of corresponding authors' 

affiliations revealed contributions from 43 countries, 

demonstrating a global research effort, albeit one with 

significant concentration. As illustrated in Figure 3, the 

United States (n=221, 32.1%) and China (n=196, 28.4%) 

were the dominant contributors, collectively accounting 

for over 60% of the published literature. They were 

followed distantly by the United Kingdom (n=62, 9.0%), 

Germany (n=36, 5.2%), and Canada (n=28, 4.1%). 

Analysis of institutional output identified Harvard 

University (USA), Stanford University (USA), and the 

Chinese Academy of Sciences (China) as the most 

prolific research institutions. 

 

Funding was acknowledged in 89.1% (n=614) 

of the studies, reflecting the resource-intensive nature of 

AI diagnostics research. The leading funding agencies 

were the U.S. National Institutes of Health (NIH), which 

supported 22.1% of the corpus, the National Natural 

Science Foundation of China (NSFC), supporting 19.3%, 

and the European Commission, supporting 8.7% of the 

studies. This funding landscape further emphasizes the 

leadership of the United States and China in driving 

innovation in this domain. 

 

Table 1: Top 10 Journals Publishing AI-Enabled Diagnostics Research (2015-2024) 

Rank Journal Record Count % of 689 

1 Scientific Reports 34 4.9% 

2 Nature Communications 28 4.1% 

3 IEEE Journal of Biomedical and Health Informatics 25 3.6% 

4 Cell 18 2.6% 

5 The Lancet Digital Health 16 2.3% 

6 BMC Bioinformatics 15 2.2% 

7 Bioinformatics 14 2.0% 

8 Journal of the American Medical Informatics Association 13 1.9% 

9 Nature Medicine 12 1.7% 

10 PNAS 11 1.6% 

 

 
Figure 2: Annual Publication Trend of AI-Enabled Diagnostics Studies (2015-2024) 
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Figure 3: Global Distribution of Corresponding Authors' Countries 

 

3.3 Domain Distribution 

The analysis of the application domains within 

the life sciences revealed a substantial imbalance in 

research focus. The corpus was overwhelmingly 

dominated by human medicine, which constituted 81.3% 

(n=560) of the included studies. The remaining studies 

were distributed across veterinary medicine (6.2%, 

n=43), plant science (5.1%, n=35), environmental 

science (4.2%, n=29), and microbial diagnostics (3.2%, 

n=22), as detailed in Table 2. This distribution 

underscores that the development of AI-enabled 

diagnostics remains primarily centered on human health 

applications, with other life science domains 

representing nascent but active areas of research. 

 

A qualitative analysis of representative use-

cases within each domain highlights the shared pattern 

recognition challenges being addressed, as well as the 

domain-specific data modalities and target conditions. 

 

Human Medicine: The studies in this domain 

covered a wide spectrum of specialties. A prominent use-

case involved the use of deep convolutional neural 

networks (CNNs) for the detection of diabetic 

retinopathy from fundus photographs, often achieving 

performance comparable to human experts. In oncology, 

transformer-based models were increasingly applied to 

classify brain tumor subtypes from multi-parametric 

MRI sequences and to predict mutational status from 

whole-slide histopathology images. Other significant 

areas included the diagnosis of skin lesions from clinical 

photographs, the interpretation of chest X-rays and CT 

scans for pulmonary diseases, and the analysis of 

electrocardiograms (ECG) for arrhythmia detection. 

 

Veterinary Medicine: Research in this domain 

often leveraged transfer learning from models pre-

trained on human data. A characteristic application was 

the fine-tuning of ResNet-50 architectures to identify 

dermatological conditions, such as mites or allergic 

reactions, in companion animals (dogs and cats) from 

images captured by smartphone cameras. Other studies 

focused on the radiographic screening for hip dysplasia 

in dogs or the classification of parasitic eggs in fecal 

samples using computer vision. 

 

Plant Science: The primary application in this 

domain was in plant disease phenotyping and precision 

agriculture. Studies frequently utilized CNNs for the 

real-time detection of foliar diseases, such as wheat rust 

and tomato blight, from images captured by unmanned 

aerial vehicles (UAVs or drones) or ground-based 

smartphones. This research aims to enable early 

intervention and reduce crop losses. 

 

Environmental Science: The most emergent 

application here involved the use of AI for biodiversity 

monitoring via environmental DNA (eDNA). 

Representative studies employed traditional machine 

learning models, such as Random Forests, to classify 

amphibian and fish species from eDNA metabarcoding 

data obtained from water samples. Other applications 

included assessing coral reef health from underwater 

imagery and predicting the presence of invasive species. 

 

Microbial Diagnostics: Studies in this domain 

primarily used AI for public health and clinical 

microbiology. A key use-case was the prediction of 

antibiotic resistance in pathogens like Mycobacterium 

tuberculosis and Staphylococcus aureus from whole-

genome sequencing data, using models such as gradient 

boosting machines (e.g., XGBoost). Other applications 

included the rapid identification of bacterial species from 

mass spectrometry (MALDI-TOF) spectra. 
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Table 2: Distribution of Studies Across Life Science Domains 

Domain Record 

Count 

% of 

689 

Representative Use-Cases 

Human Medicine 560 81.3% Diabetic retinopathy screening (Fundus), Brain tumor classification (MRI), 

Skin lesion diagnosis (Clinical photo), Arrhythmia detection (ECG). 

Veterinary 

Medicine 

43 6.2% Canine dermatology classification (Smartphone image), Hip dysplasia 

screening (X-ray). 

Plant Science 35 5.1% Crop disease detection (UAV & smartphone image). 

Environmental 

Science 

29 4.2% Biodiversity monitoring via eDNA metabarcoding, Coral reef health 

assessment (Underwater image). 

Microbial 

Diagnostics 

22 3.2% Antibiotic resistance prediction (Genomics), Bacterial species identification 

(Mass spectrometry). 

 

3.4 Modalities & Tasks 

The cross-tabulation of diagnostic modalities 

and AI tasks revealed distinct patterns and associations, 

providing a detailed map of the field's technical focus. 

The distribution of data modalities, illustrated in Figure 

4 and quantified in Table 3, showed a clear dominance 

of Medical Imaging (encompassing radiology, 

histopathology, and fundus photography), which 

constituted 65.0% (n=448) of the corpus. This was 

followed by Omics data (collectively 18.0%, n=124), 

with genomics as the most prevalent sub-type. Time-

Series data (e.g., ECG, EEG) accounted for 8.1% (n=56), 

while Spectra (e.g., mass spectrometry) 

and Text/Clinical Notes represented 4.1% (n=28) and 

2.9% (n=20) respectively. eDNA sequences, while a 

small portion of the overall corpus (1.9%, n=13), 

demonstrated the most rapid growth rate within the 

environmental domain. 

 

The relationship between modality and task was 

highly structured. Medical imaging data was primarily 

used for Classification (45% of imaging studies) 

and Detection/Localization (30%) tasks, such as 

categorizing a mammogram as benign/malignant or 

identifying tumor boundaries. Segmentation (20%), 

crucial for quantifying tissue volumes or lesion sizes, 

was almost exclusively applied to imaging data. In 

contrast, Omics and Spectra data were overwhelmingly 

used for Classification tasks (e.g., disease subtyping, 

species identification), accounting for over 95% of their 

applications. Time-Series data was predominantly 

leveraged for Anomaly Detection (55%, e.g., identifying 

arrhythmic heartbeats) and Classification (40%, e.g., 

sleep stage scoring). 

 

A significant and accelerating trend, 

particularly post-2021, was the rise of multimodal AI 

approaches. The proportion of studies integrating 

multiple data modalities (e.g., MRI with genomic 

markers, clinical text with lab values) grew from less 

than 2% in 2019 to 12% in 2024. These models 

consistently reported performance gains over their 

unimodal counterparts, suggesting that data fusion is a 

key pathway to improved diagnostic accuracy. 

Furthermore, the last two years of the review period saw 

the emergence of foundation models and large language 

models (LLMs). Initially applied to text for tasks like 

inferring diagnoses from clinical notes, vision 

transformers (ViTs) pre-trained on massive image 

datasets began to be adapted for specialized diagnostic 

tasks in medical imaging, indicating a shift towards more 

scalable and generalizable architectures. 

 

Table 3: Cross-Tabulation of Primary Modality by AI Task (Number of Studies) 

Modality Classification Detection/Localization Segmentation Anomaly 

Detection 

Triage Total 

Medical Imaging 202 134 90 12 10 448 

Omics (Genomics, etc.) 118 4 0 2 0 124 

Time-Series 22 0 0 31 3 56 

Spectra 26 2 0 0 0 28 

Text/Notes 18 0 0 0 2 20 

eDNA 13 0 0 0 0 13 

Total 399 140 90 45 15 689 
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Figure 4: Heatmap of Modality by AI Task 

 

3.5 Model Performance & Validation 

An in-depth analysis of reported model 

performance, validation strategies, and calibration 

revealed critical insights into the field's claims and its 

readiness for real-world application. 

 

Performance Metrics Distribution: The Area 

Under the Receiver Operating Characteristic curve 

(AUROC) was the near-universal metric for reporting 

diagnostic performance, utilized in 94% (n=647) of 

studies. The median AUROC across the entire corpus 

was 0.94 (Interquartile Range [IQR]: 0.88-0.97). As 

shown in Figure 5, the distribution varied by domain; 

human medical imaging studies reported the highest 

median AUROCs (0.95, IQR: 0.90-0.98), while 

environmental and plant science applications, often 

dealing with noisier field data, reported slightly lower 

but still strong median values (0.91, IQR: 0.85-0.94). 

Sensitivity and specificity were commonly reported 

together (65% of studies), with median values of 0.91 

(IQR: 0.84-0.95) and 0.89 (IQR: 0.82-0.94), 

respectively. A critical finding was the under-utilization 

of the Area Under the Precision-Recall Curve (AUPRC), 

which was reported in only 22% (n=152) of studies, 

despite its recognized superiority for imbalanced 

datasets—a common scenario in diagnostic studies 

where a condition of interest is rare. 

 

Validation Rigor and Its Impact: A stark 

contrast was observed between internal and external 

validation performance. The median AUROC for studies 

that performed only internal validation (e.g., random 

train-test split or cross-validation) was 0.96 (IQR: 0.92-

0.98). However, for the minority of studies that 

performed rigorous external validation on a fully 

independent cohort from a different institution, 

geography, or population, the median AUROC was 

significantly lower at 0.91 (IQR: 0.85-0.95). This 

performance drop highlights the pervasive risk of 

overfitting and the optimistic bias introduced by 

evaluating models on data from the same source. Overall, 

only 28.0% (n=193) of studies conducted such external 

validation. 

 

The proportion of studies conducted with 

a prospective design, which represents the highest level 

of evidence for gauging real-world utility, was 

exceedingly rare, constituting only 9.0% (n=62) of the 

corpus. These were primarily found in high-impact 

clinical trials of AI systems for radiology and 

ophthalmology. 

 

Calibration Reporting: The reporting of model 

calibration was critically neglected. Only 5.2% (n=36) of 

studies assessed or reported whether the predicted 

probabilities of the AI model aligned with the true 

observed probabilities (e.g., using calibration plots or 

metrics like Expected Calibration Error). This represents 

a major translational gap, as a well-calibrated model is 

essential for clinical decision-making where risk 

stratification is key. 

 

Table 4: Summary of Model Performance and Validation Practices 

Metric / Practice Overall (n=689) Human Medical Imaging (n=448) Omics (n=124) 

Median AUROC (IQR) 0.94 (0.88-0.97) 0.95 (0.90-0.98) 0.92 (0.86-0.95) 

Reports Sensitivity/Specificity 65.0% 68.5% 70.2% 

Reports AUPRC 22.1% 18.3% 35.5% 

Performed External Validation 28.0% 25.2% 32.3% 

Prospective Study Design 9.0% 10.5% 4.8% 

Reports Calibration 5.2% 6.0% 3.2% 
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Figure 5: Distribution of Reported AUROC Values by Domain 

 

3.6 Reproducibility and Openness 

A systematic evaluation of the corpus for 

elements supporting computational reproducibility 

revealed a significant gap between the stated potential of 

AI and the practices required to verify and build upon 

published findings. As summarized in Table 5, the 

commitment to open science was markedly low. 

 

Only 22.9% (n=158) of studies provided a 

direct link to the source code used for model training and 

evaluation. A further 14.8% (n=102) stated that code was 

"available upon request," a practice widely criticized in 

the literature as unreliable and a barrier to 

reproducibility. Similarly, the raw or pre-processed 

datasets required to replicate the studies were fully and 

publicly accessible in only 18.0% (n=124) of cases. 

When available, datasets were most commonly hosted on 

general-purpose platforms like GitHub or Zenodo, with 

specialized repositories like The Cancer Imaging 

Archive (TCIA) used primarily for human medical 

imaging. 

 

The licensing of these shared resources was 

often ambiguous. Of the 158 studies with available code, 

only 56 (35.4%) specified a software license, with 

permissive licenses (MIT, Apache 2.0) being the most 

common. For data, only 41 of the 124 studies (33.1%) 

with available data specified a license, typically Creative 

Commons (CC-BY or CC0). 

 

A critical and almost universal shortcoming was 

the absence of preregistration. Only 0.6% (n=4) of 

studies were associated with a publicly available, time-

stamped preregistered protocol detailing the hypotheses, 

model architecture, and analysis plan before the research 

was conducted. This lack of preregistration increases the 

risk of flexible data analysis and selective reporting, 

known as "p-hacking" or "HARKing" (Hypothesizing 

After the Results are Known). 

 

Furthermore, a qualitative review of the 

methodology sections identified a recurring risk of data 

leakage—where information from the test set 

inadvertently influences the training process. This was a 

particular concern in omics studies (n=19), where 

improper splitting of datasets containing multiple 

samples from the same patient or batch, performed 

before normalization or feature selection, could 

artificially inflate performance metrics. Fewer than 5% 

of studies explicitly described measures to prevent this, 

such as patient-wise or site-wise splitting. 

 

Table 5: Summary of Reproducibility and Openness Practices 

Practice Number of Studies Percentage of Corpus (n=689) 

Code Publicly Available 158 22.9% 

Code Available Upon Request 102 14.8% 

Data Publicly Available 124 18.0% 

Data Available Upon Request 87 12.6% 

Study Preregistered 4 0.6% 

Explicit Mention of Data Leakage Prevention 31 4.5% 

 

3.7 Fairness, Ethics, and Regulatory Readiness 

The assessment of fairness, ethical oversight, 

and regulatory alignment indicated that the field is in its 

early stages of addressing these critical translational 

dimensions, with pronounced disparities across domains. 
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Fairness and Bias Assessment: Formal 

evaluation of model fairness or performance disparity 

across demographic or biological subgroups was 

conducted in only 7.0% (n=48) of studies. As illustrated 

in Figure 6, these assessments were almost exclusively 

confined to human medicine (n=46), where they 

evaluated bias related to patient sex, race, age, or 

socioeconomic status. The most common techniques 

were subgroup analysis (reporting performance metrics 

per subgroup) and, in a handful of more advanced 

studies, the application of fairness metrics like equalized 

odds or demographic parity. In stark contrast, such 

considerations were virtually absent in other domains. 

No studies in plant or environmental science assessed 

performance variation across different species strains or 

ecosystem types, and only a single study in veterinary 

medicine considered breed as a potential variable. 

 

Ethical Reporting: Ethical oversight was 

consistently reported in human medical studies (98%), 

with declarations of Institutional Review Board (IRB) 

approval and patient consent. However, in environmental 

and microbial studies, explicit ethical statements 

regarding sample collection or data usage were 

infrequent (reported in <30% of studies), highlighting a 

domain-specific disparity in the perceived ethical 

dimensions of the research. 

 

Regulatory Readiness: Explicit mention of or 

alignment with a regulatory pathway was rare, occurring 

in only 4.1% (n=28) of the corpus. These mentions were 

predominantly clustered around specific, high-profile 

AI-based software as a medical device (SaMD) 

undergoing or having received clearance from the U.S. 

Food and Drug Administration (FDA) or the European 

CE-IVD mark. All these studies fell within human 

medicine, focusing on applications like radiology 

decision support and retinopathy diagnosis. The vast 

majority of studies (95.9%) made no reference to 

regulatory standards, Good Machine Learning Practice 

(GMLP), or the development of required documentation 

such as "model cards" that detail a model's intended use, 

limitations, and performance characteristics. This 

indicates a substantial gap between technical 

development and the rigorous processes required for 

clinical or environmental deployment and monitoring. 

 

 
Figure 6. Distribution of Fairness/Bias Assessments Across Domains 

 

3.8 Bibliometrics and Thematic Evolution 

Co-authorship and Collaboration Networks 

The co-authorship network analysis, visualized 

in Figure 7, revealed a complex and stratified global 

research landscape. The network consisted of 2,854 

unique authors, forming one large, densely connected 

core cluster and several smaller, distinct peripheral 

clusters. The core cluster was predominantly composed 

of researchers from leading U.S. institutions (e.g., 

Harvard Medical School, Stanford University) and 

Chinese academies (e.g., Chinese Academy of Sciences), 

often in collaboration with major technology companies. 

This cluster was centrally focused on medical imaging 

with deep learning. Smaller, well-defined clusters 

included a European consortium focused on 

bioinformatics and omics-based biomarker discovery, 

and an Asian-Pacific network centered on agricultural AI 

for plant disease detection. The country collaboration 

map further emphasized the dominance of the United 

States as the central hub for international partnerships, 

with strong collaborative ties to the United Kingdom, 

Germany, and Canada. While China showed a high 

volume of production, its collaboration network was 

more internally focused, with fewer strong international 

links compared to the U.S. 
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Keyword Clusters and Thematic Evolution 

Keyword co-occurrence analysis identified three major 

thematic clusters, defining the intellectual structure of 

the field: 

➢ Cluster 1 (Red): "Clinical Deep Learning for 

Medical Imaging." This was the largest and most 

cohesive cluster, with core keywords including deep 

learning, convolutional neural networks (CNN), 

radiology, computer-aided diagnosis, magnetic 

resonance imaging (MRI), and classification. This 

cluster represents the technical mainstream of the 

field. 

➢ Cluster 2 (Green): "Precision Medicine and Omics 

Biomarkers." This cluster was characterized by 

keywords such as machine learning, biomarker, 

genomics, precision medicine, feature selection, 

transcriptomics, and random forest. It represents a 

more traditional bioinformatics approach, often 

applied to drug discovery and patient stratification. 

➢ Cluster 3 (Blue): "Emerging Applications and 

Explainable AI." This cluster captured the 

expanding frontiers of the field, with keywords 

like eDNA, biodiversity, plant disease, 

spectroscopy, time-series, and explainable AI (XAI). 

The presence of XAI here indicates its status as an 

emerging, cross-cutting concern rather than a 

standard practice in the established clusters. 

 

Burst term analysis, which detects keywords 

with a sharp increase in usage, identified "transformer" 

(strength: 8.92), "foundation model" (strength: 7.45), 

"multimodal" (strength: 6.88), and "eDNA" (strength: 

5.21) as the most significant emerging terms in the last 

two years of the review period. The thematic evolution 

map (Figure 8) graphically illustrated the field's 

progression from 2015-2019 to 2020-2025. The earlier 

period was defined by the niches "SVM for Biomarker 

Discovery" and "CNN for Medical Image Analysis." 

These themes evolved and merged in the latter period 

into the more integrated and complex themes of 

"Multimodal Fusion for Clinical Diagnosis" and 

"Foundation Models for Generalizable Diagnostics," 

demonstrating the field's maturation and convergence. 

 

Influential Papers and Venues 

Analysis of citation counts and the h-index 

identified the most influential papers and venues. The 

top-cited papers were foundational studies published in 

high-impact journals such as Nature, Cell, and JAMA, 

which demonstrated the superior performance of deep 

learning models in specific diagnostic tasks like skin 

cancer classification from clinical images and diabetic 

retinopathy detection from fundus photographs. These 

papers served as benchmarks and proof-of-concept for 

the entire field. The most influential venues, based on the 

total number of citations to papers in our corpus, 

were Nature, Cell, The Lancet Digital Health, 

and JAMA, highlighting that the field's high-impact work 

is concentrated in a select group of interdisciplinary and 

clinical journals. 

 

 
Figure 7: Co-authorship Network of Countries 
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Figure 8: Thematic Evolution Map 

 

3.9 Synthesis of the Evidence Base 

The scoping review of 689 studies reveals a 

field in a phase of explosive growth and rapid 

technological sophistication, yet facing significant 

translational challenges. The evidence base is dominated 

by high-performing models for diagnostic tasks in 

human medical imaging, driven by deep learning. 

However, this technical promise is tempered by a 

consistent deficit in rigor and readiness: external 

validation is uncommon, reproducibility is low, and 

considerations of fairness, calibration, and regulatory 

pathways are afterthoughts in most publications. The 

bibliometric analysis confirms the leadership of the 

United States and China and identifies a clear thematic 

evolution from siloed applications toward multimodal 

and foundation model approaches. The emerging 

frontiers—represented by key terms like "transformer," 

"eDNA," and "XAI"—point to a future that is more 

computationally advanced and broad in application, but 

the foundational gaps in validation and reproducibility 

must be addressed to ensure these advances yield robust, 

equitable, and deployable diagnostic tools across the life 

sciences. 

 

4. Thematic Synthesis & Gaps  

4.1 Cross-domain patterns (what generalizes vs 

remains siloed) 

Across human, veterinary, plant, 

environmental, and microbial diagnostics, a common 

success pattern emerges: supervised deep learning excels 

when labels are abundant, single-site data are 

homogeneous, and targets are visually or statistically 

distinct (e.g., radiology classification, canonical omics 

signatures). Yet two obstacles repeatedly limit 

transferability: (i) shortcut learning models latch onto 

spurious, site-specific cues rather than causal signal—

and (ii) dataset shift performance drops when moving 

from internal to external cohorts or from lab to field. 

Both are well-documented in medical imaging (e.g., 

hospital-specific confounding in chest X-rays) and 

formalized as “shortcut learning,” with analogous issues 

seen in plant phenotyping and bioacoustics/eDNA 

pipelines. The net result is a consistent internal-to-

external performance gap and siloed tooling by domain. 

Standard mitigations—site-wise splits, external 

validation, harmonization, and causal/robust learning—

remain underused but are broadly applicable across 

domains. [19–21]  

 

4.2 Data quality & ground-truth challenges (label 

noise, gold standards, class imbalance) 

Label noise is pervasive. In medical imaging, 

“gold labels” often inherit schema ambiguity (e.g., 

uncertain radiologic findings) and inter-reader variability 

(pathology grading, dermatology), yielding 

disagreement noise that propagates into training targets. 

Recent reviews detail noise types and practical remedies 

(consensus reading, uncertainty-aware losses, confident 

learning, and curriculum/self-training). Class imbalance, 

typical of rare diseases and invasive species surveillance, 

further degrades precision unless addressed via 

calibrated thresholds or cost-sensitive learning. In omics, 

batch effects (lab, kit, instrument, site) systematically 

bias features; uncorrected batches inflate apparent 

accuracy and confound biological signals. Contemporary 

evaluations show that choice of batch-correction method 

materially changes downstream differential signals and 

predictive robustness; multi-omics integration further 

raises the stakes. Collectively, rigorous labeling 

protocols (multi-reader adjudication with arbitration), 

explicit uncertainty modeling, and pre-registered batch 

plans should be treated as first-class design elements, not 

afterthoughts. [22–26]  
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4.3 External validity & domain shift (lab→field, 

single-center→multi-center) 

Across the corpus, external validation remains 

the best single predictor of real-world utility—and the 

least frequently performed at scale. Internal cross-

validation inflates headline metrics, while independent, 

multi-center testing reveals clinically relevant drops. 

This pattern holds in neurology, radiology, and other 

subfields, and it generalizes to agricultural plant disease 

detection, where models trained on curated, close-range 

leaf images underperform on drone or field imagery with 

occlusion, lighting, and cultivar variation. Domain-

generalization strategies—site-balanced splits, target-

shift calibration, test-time adaptation, and federated 

evaluation—are increasingly advocated but 

inconsistently reported. A practical takeaway for any 

life-science diagnostic study is to plan for at least one 

geographically and operationally independent evaluation 

and to budget for performance deltas of non-trivial 

magnitude between internal and external settings. [19–

22, 27]  

 

4.4 Interpretability & decision support (saliency, 

SHAP, reporting) 

Interpretability is necessary for use, but 

common tools are not automatically trustworthy. 

Saliency maps can pass sanity checks only weakly and 

may highlight non-causal regions; post-hoc attributions 

(e.g., SHAP) risk explanation leakage if pipelines are not 

locked and audited. Hence, interpretability artifacts 

should be validated (ablation, counterfactuals, synthetic 

controls) and tied to intended decisions (thresholds, 

triage policies). Beyond local explanations, model cards 

and transparent dataset “datasheets” help align claims 

with evidence. Finally, decision support requires 

calibration: modern neural networks are typically over-

confident, which undermines risk stratification and 

triage. Simple, reportable fixes (temperature scaling) 

plus reliability diagrams and decision-curve analysis 

(DCA) should be routine, especially in imbalanced 

problems. [28–33]  

 

4.5 Governance: ethics, privacy, biosecurity, and 

environmental contexts (e.g., eDNA) 

Governance now spans reporting, regulation, 

and biosecurity. On reporting, dedicated guidelines exist 

for trials of AI (CONSORT-AI, SPIRIT-AI) and for 

prediction models (TRIPOD-AI), alongside diagnostic-

accuracy guidance (QUADAS-AI in development). 

These call for transparent data flows, pre-specification, 

calibration, human factors, and deployment context. 

Regulators are converging on good machine-learning 

practice and lifecycle controls: the EU AI Act has 

entered phased application with high-risk obligations 

(including many medical AI) rolling in over 2025–2027; 

the IMDRF/FDA community has advanced guidance for 

SaMD learning systems and predetermined change 

control plans. WHO’s ethics frameworks urge robust 

oversight for generative and diagnostic AI, especially 

where health data intersect with identity and equity. 

Environmental diagnostics add biosecurity and 

access-and-benefit-sharing nuances. eDNA workflows 

face contamination/false-positive risks and jurisdictional 

issues (e.g., genetic resource governance). Field 

programs should document controls (field blanks, 

replication, pre/post-PCR separation), chain-of-custody, 

and, where applicable, compliance with access/benefit-

sharing requirements. Across domains, privacy-

preserving evaluation (e.g., federated benchmarking) can 

reduce legal and ethical friction while enabling external 

validity. [34–42]  

 

4.6 Priority gaps & opportunities: benchmarks, 

baselines, cost-effectiveness, low-resource settings 

Standardized, domain-spanning benchmarks 

are the fastest lever for cumulative progress. In human 

imaging, resources like CheXpert catalyzed reproducible 

comparisons; newer platforms such as MedPerf extend 

this by enabling federated external evaluation across 

hospitals, preserving privacy while surfacing real-world 

generalization gaps. Comparable community 

benchmarks are sparse in veterinary, plant, 

environmental, and microbial diagnostics; cross-domain 

“anchor tasks” (e.g., image-plus-omics fusion, eDNA 

classification with contamination controls) would 

accelerate transferable methods. 

 

Second, realistic baselines and decision-centric 

reporting are overdue. Studies should publish 

thresholded operating points, calibration diagnostics, and 

DCAs against practical comparators (e.g., technician 

triage, standard lab assay) rather than only AUROC 

curves. 

 

Third, economic evidence is thin. Systematic 

reviews of AI cost-effectiveness in radiology find 

promising but limited and heterogeneous results, often 

hampered by small samples, short time horizons, and 

lack of implementation costs. Prospective health-

economic analyses (time-motion, budget impact, 

sensitivity to prevalence and workflow) should be 

embedded early, including for agriculture and 

environmental monitoring where logistics dominate 

value. 

 

Finally, low-resource settings present both need 

and opportunity. WHO urges fit-for-purpose design: on-

device inference, robust offline modes, minimal 

calibration requirements, and community governance for 

data and models. Coupling these with federated 

benchmarking (e.g., MedPerf pilots) can raise the floor 

on equitable validation while respecting data 

sovereignty. [22, 34, 41–46]  

 

6. DISCUSSION 
6.1 Key insights answering RQ1–RQ4 

Across 2015–2025, AI-enabled diagnostics 

expanded rapidly, but unevenly: human medical imaging 

dominates volume, methods, and visible deployment, 

while veterinary, plant, environmental and microbial 
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diagnostics are smaller but growing. Technically, the 

center of gravity is shifting from task-specific CNN 

pipelines toward multimodal and “foundation model” 

paradigms that promise broader transfer and data-

efficient adaptation, yet still face gaps in external validity 

and reproducibility. Bibliometrics mirror this: the U.S. 

and China anchor output and collaborations; high-impact 

venues concentrate the most influential exemplars. 

Together, results show a field maturing toward generalist 

models and cross-modal fusion, but translation 

lagsparticularly around robust validation, calibration, 

code/data openness, and governance. [47–50]  

 

Evidence for real-world readiness remains 

mixed. Randomized or prospective evaluations exist but 

are rare relative to the literature base; most performance 

claims rely on internal validation, and results often 

attenuate on external cohorts. Regulatory traction is 

visible (e.g., FDA’s running list of AI/ML-enabled 

devices; early national deployments in screening 

pathways), but only a small fraction of the research 

corpus aligns explicitly with regulatory evidence 

expectations or post-market monitoring norms. [51–55]  

 

On openness and reproducibility, code/data 

availability, clear licensing, preregistration, and leakage 

guards are the exception rather than the rule. Fairness 

auditing and calibration reporting are similarly sparse 

outside human clinical domains, and even there remain 

inconsistent. As a result, our RQ2–RQ3 answers 

converge on the same theme: impressive technical 

promise with systematic shortfalls in external validity, 

transparency, and equity checks that hinder trustworthy 

deployment across life-science subfields. [56–58]  

 

6.2 Comparison with prior reviews (what’s new) 

Earlier syntheses especially in medical imaging 

highlighted optimistic internal metrics, scarce external 

validation, and risk of bias. Our cross-domain scope 

confirms those concerns and extends them beyond 

human health, showing similar issues in plant pathology, 

biodiversity/eDNA, and microbial diagnostics. What is 

new since the 2018–2021 review wave is the emergence 

of foundation models (vision, language, and vision-

language) adapted to medicine and biology, early 

evidence of zero-/few-shot transfer, and first large-scale 

national deployments (e.g., AI-supported double reading 

in population screening). Our findings thus update the 

evidence base with both opportunities (multimodal 

transfer; foundation models) and persistent gaps 

(methodological rigor; prospective evidence; 

governance). [51,47–49,60]  

 

6.3 Implications for research, practice, and policy 

For researchers, three priorities stand out. First, 

design for external validity: partition at the 

patient/site/season/species level; evaluate on 

systematically different cohorts; and report calibration 

alongside discrimination (e.g., ECE/plots) so outputs can 

be used as risk estimates, not just rankers. Second, treat 

data governance and ground-truth as first-class: 

document acquisition, expert agreement, and label 

uncertainty; quantify inter-/intra-observer variability; 

and follow domain standards (e.g., MIEM for eDNA) to 

make data usable across labs. Third, move from 

optimistic internal AUCs toward realistic baselines and 

decision-utility reporting (e.g., decision-curve analysis) 

and, where possible, cost-effectiveness. [59,61–64]  

 

For practitioners, the lesson is to demand 

evidence that matches intended use: external and 

prospective evaluations in target workflows; pre-

specified operating points; calibration and failure 

analysis; monitored rollouts with drift/shift detection; 

and fairness auditing for relevant subgroups (patients, 

breeds, cultivars, habitats). When using foundation or 

generalist models, insist on domain-appropriate 

adaptation (e.g., fine-tuning with domain controls, 

prompt auditing) and thorough re-validation. [48,57–58]  

 

For policymakers and sponsors, converging 

guidance now exists to operationalize “trustworthy AI” 

principles in health: the WHO’s governance note for 

large (multi)modal models; NIST’s AI Risk 

Management Framework (including the 2024 Generative 

AI profile); and OECD’s 2024–2025 health AI/incident-

reporting initiatives. These frameworks, together with 

device-specific regimes (FDA; EU AI Act obligations 

for high-risk systems), can be made concrete in calls, 

reviews, and procurement: require external validation, 

monitoring plans, incident reporting, and model 

cards/datasheets; reward reproducibility and cost-

effectiveness evidence; and align incentives with safe 

deployment. [54–56,65–67]  

 

6.4 Limitations 

This scoping review synthesizes a very broad 

landscape across subfields and modalities. Inevitably, 

heterogeneity in indexing (e.g., domain-specific 

repositories), English-only filters, and differing keyword 

conventions may under-capture niches (e.g., aquaculture 

diagnostics; non-English environmental monitoring). 

Bibliometrics reflect citation and database coverage 

biases; rapidly evolving preprints complicate temporal 

comparisons. Finally, while we mapped 

governance/regulatory context, device counts and legal 

milestones evolve; we anchor claims in official sources 

but caution that national adoption and post-market 

performance are moving targets. [50,66]  

 

6.5 Future directions 

Benchmarks & evaluation. Community 

benchmarks that prioritize external and federated testing 

can close the generalization gap; initiatives like MedPerf 

show how to evaluate models on diverse, privacy-

preserving cohorts. The next wave should extend this 

pattern to veterinary, plant, environmental and microbial 

settings, with realistic class imbalance and shift 

scenarios, and with mandated calibration/fairness 

reporting. [68] 
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Multimodal & foundation models. Pursue 

domain-aware adaptation (lightweight tuning, retrieval-

augmented pipelines) and rigorous cross-site validation 

before deployment. Build shared, licensed, well-

documented corpora spanning images, -omics, spectra, 

eDNA and text, with datasheets and leakage checks. [47–

49,59]  

 

Prospective validation & economics. Move 

from retrospective AUCs to prospective studies, stepped-

wedge or RCT designs where feasible, and routine 

reporting of clinical utility (decision curves), workflow 

impact, and cost-effectiveness in target settings 

(including low-resource). [52–53,64]  

 

Governance & monitoring. Operationalize 

NIST/OECD/WHO guidance as funder and journal 

requirements, harmonized with FDA/EU expectations: 

pre-registration or structured analysis plans; model cards 

with intended use, data lineage, subgroup performance; 

real-time MLOps with incident reporting; and 

environmental/biological sampling standards (MIEM) 

for non-clinical domains. [54–56,59,65–67] 

 

7. CONCLUSION  
This scoping review maps a decade of AI-

enabled diagnostics across the life sciences and shows a 

field that is simultaneously maturing and uneven. Output 

has scaled rapidly since 2015, but activity remains 

concentrated in human medical imaging, with 

comparatively modest footprints in veterinary, plant, 

environmental, and microbial applications. Methods are 

shifting from task-specific pipelines toward multimodal 

and foundation-model approaches, yet the translational 

evidence still trails the technical promise: external 

validity is inconsistently demonstrated, calibration is 

under-reported, and reproducibility and openness are not 

the norm. Bibliometric patterns mirror this dynamic—

global participation with clear hubs—and thematic 

analysis points to consolidation around multimodal 

fusion and generalizable architectures. 

 

Taken together, our results answer the core 

questions. For RQ1, trends reveal steady growth, a 

dominance of imaging and classification tasks, and early 

(but increasing) adoption of multimodal/foundation 

models; the geography is led by a few countries and 

institutions, and metrics are still reported primarily as 

AUROC with limited prevalence-aware summaries. For 

RQ2, only a minority of studies provide external 

validation or share code/data under explicit licenses; 

preregistration remains rare. For RQ3, fairness auditing, 

probability calibration, and regulatory readiness are the 

most consistent cross-domain gaps, and they matter 

equally for clinical trials, farm and field phenotyping, 

biodiversity monitoring, and public-health 

microbiology. For RQ4, the bibliometric structure 

highlights a small set of venues and author clusters 

driving influence, with emerging clusters linking 

explainability, multimodality, and environmental 

applications. 

 

The practical message is clear. Credible 

diagnostic AI—whether for a radiology service, a 

veterinary clinic, crop disease surveillance, or eDNA 

biodiversity monitoring—demands the same 

foundations: leakage-resistant design and transparent 

datasheets; site- or season-aware splits; at least one 

independent evaluation that reflects real deployment; 

prevalence-aware metrics and operating points; 

calibration and decision-utility reporting; robustness 

checks against domain shift; and subgroup/fairness 

audits tied to the intended population. Prospective or 

“silent-mode” studies, together with fit-for-purpose 

MLOps (drift monitoring, change control, incident 

reporting), convert promising models into dependable 

tools. Funders, journals, and regulators can accelerate 

this shift by requiring external validation, open artefacts, 

and model cards, and by incentivizing shared, domain-

spanning benchmarks (including federated evaluations) 

that test generalization without moving sensitive data. 

 

This review has limitations inherent to scoping 

syntheses: English-language focus, database coverage 

differences across subfields, rapidly evolving preprints, 

and heterogeneity in reporting that complicates like-for-

like comparisons. Even so, the convergent patterns are 

robust: performance drops on external cohorts are 

common; openness is variable; and governance 

expectations are rising. The most productive next steps 

are concrete and actionable: establish cross-domain 

benchmark suites with mandated calibration/fairness 

reporting; build licensed, well-documented corpora for 

multimodal and foundation-model adaptation; prioritize 

prospective studies and cost-effectiveness analyses in 

target workflows; and align research programs with 

emerging regulatory frameworks from the outset. If the 

community adopts these practices, the next decade 

should deliver not only higher accuracy, but also reliable, 

equitable, and auditable diagnostic systems that work 

across clinics, farms, rivers, and labs alike. 
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