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Artificial intelligence (Al) is transforming diagnostic decision-making across the life sciences, yet evidence remains
fragmented across human, veterinary, plant, environmental, and microbial domains. We conducted a PRISMA-ScR scoping
review (protocol preregistered on OSF; details in Supplement) and bibliometric analysis covering 2015-2025. Searches in
PubMed/MEDLINE, Scopus, Web of Science, and IEEE Xplore (plus arXiv/bioRxiv tagging) identified 28,541 records
and 68 preprints; after de-duplication and dual screening, 689 primary studies met inclusion criteria (with 42 preprints
analyzed descriptively but excluded from citation-based bibliometrics). Human medicine dominated the corpus (81.3%),
followed by veterinary (6.2%), plant (5.1%), environmental (4.2%), and microbial diagnostics (3.2%). Modalities were led
by medical imaging (65.0%), then omics (18.0%), time-series (8.1%), spectra (4.1%), text (2.9%), and eDNA (1.9%).
Reported performance was high (median AUROC 0.94), but external validity and transparency were limited: only 28.0%
performed external validation, 9.0% used prospective designs, and 5.2% reported probability calibration. Reproducibility
signals were weak (code availability 22.9%, data availability 18.0%, explicit preregistration rare), and fairness/bias
assessments appeared in 7.0% of studies, concentrated in human health. Bibliometrics showed rapid year-on-year growth,
with the United States (32.1%) and China (28.4%) leading output and collaborations. Trends indicate a shift from task-
specific CNNs to multimodal/foundation-model approaches and early data-fusion gains, but consistent gaps persist in
leakage controls, calibration, subgroup reporting, and regulatory alignment. We recommend domain-aware, leakage-
resistant splits; at least one independent, real-world evaluation; prevalence-aware metrics with calibration and decision-
utility; open datasheets/model cards; and federated/external benchmarking to probe generalization. These practices can
convert impressive internal results into dependable, equitable diagnostics that work across clinics, farms, rivers, and labs.
Keywords: diagnostic artificial intelligence; life sciences; PRISMA-ScR; bibliometrics; external validation; calibration;
fairness; reproducibility; foundation models; multimodal fusion; environmental DNA (eDNA); plant pathology; veterinary
diagnostics; microbial diagnostics.
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1. INTRODUCTION

Artificial intelligence (AI) is transforming
diagnostics across the life sciences because it can learn
patterns from multi-modal biological signals at scales
and speeds that exceed conventional statistics. From
microscopes and radiology scanners to sequencers, mass
spectrometers, wearable sensors, and environmental
sampling kits, data volume and diversity have exploded.
At the same time, generative and large multi-modal
models (LMMs) are entering health and biomedical
research, raising both opportunities (cross-domain

representation learning) and governance needs (safety,
transparency, accountability). This convergence explains
the surge of Al-assisted decision support in human,
veterinary, plant, environmental, and microbial
applications since 2015, and motivates a cross-domain
synthesis. [1,2]

1.1 Background: why AI for diagnostics across life
sciences

Across domains, diagnostic work increasingly
depends on recognizing weak, high-dimensional signals.
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In clinical medicine, deep learning augments image
interpretation, triage, and workflow efficiency; in
microbial health, machine learning (ML) screens
genomes and proteomes to infer pathogen identity and
antimicrobial  resistance = (AMR); in  ecology,
environmental DNA (eDNA) enables non-invasive
detection of species and invasive taxa; in agriculture,
computer vision and hyperspectral sensing detect plant
stress before symptoms are visible; and in veterinary
practice, Al supports radiology and point-of-care
imaging where subspecialists are scarce. Beyond
efficiency, these tools expand coverage (field
deployability, low-cost sensors) and sensitivity (faint
signatures in omics or spectra), while shifting expertise
from ad-hoc heuristics to reproducible pipelines. [3-6]

1.2 Definitions & Scope

Here, “diagnostics” means computational
inference about the presence/absence, type, or stage of a
biological condition from measured evidence. We
include human, veterinary, plant, environmental, and
microbial settings; modalities span images (e.g.,
radiology, histopathology, field photos), omics
(genomics, transcriptomics, proteomics, metabolomics,
metagenomics/metabarcoding), spectra (Raman/IR/MS),
time-series (wearables, ICU monitors), and text (clinical
notes, lab reports). Tasks include classification,
detection, segmentation, anomaly detection/novelty
discovery, triage, and risk scoring. Our scope covers
classical ML and deep learning, plus emerging
LMMs/foundation models when applied to diagnostic
endpoints. Representative methodological and domain
reviews in radiology and multi-omics ground these
definitions. [5,6]

1.3 Gap: fragmented evidence, unclear best practices
Despite striking successes, the evidence base
remains siloed. High-profile advances in microbial
discovery illustrate Al’s potential: a 2024 Cell study
mined the global microbiome to predict nearly one
million antimicrobial peptide candidates, dozens active
in vitro—yet translating such pipelines into standardized
diagnostic validation is uneven. In plants, reviews show
pre-symptomatic disease detection via hyperspectral +
vision transformers, but field-scale adoption still favors
efficient RGB CNNs; veterinary diagnostics are
advancing in imaging, while coverage across species and
conditions is patchy. The literature lacks a consolidated
view of what works, where, and under what evidentiary
standards across
human/vet/plant/environmental/microbial strata. [7-9]

Compounding fragmentation are shortfalls in
external validation and reproducibility. Recent meta-
research indicates that only about one in six clinical
prediction models is externally validated after
publication; domain-specific reviews (e.g., ICU scores)
echo performance drops on external cohorts. Code/data
sharing remains limited, and reproducibility is further
threatened by methodological pitfalls such as data

leakage, optimistic test design, and prevalence shift.
Together these issues obscure true generalizability and
slow safe deployment. [10-12]

A parallel gap concerns calibration, uncertainty,
and fairness. Diagnostic models must output reliable
probabilities, not just rankings; however, miscalibration
and absence of uncertainty estimates are common.
Fairness research critical for equitable performance
across demographics, species, environments, and
geographies remains sparse or narrowly framed in many
clinical domains. Finally, regulatory readiness differs by
sector: in human health, the U.S. FDA now lists hundreds
of authorized Al-enabled devices, while WHO has issued
governance guidance for LMMs; analogous clarity is less
mature in non-human domains. [1,2,13—-15]

1.4 Objectives & Contributions

To address these gaps, this PRISMA-Scoping
Review (PRISMA-ScR) maps Al-enabled diagnostics
across the life sciences from 2015-2025, integrates
bibliometrics to profile the field’s structure, and distills
best practices.

> RQI1 (Trends): What are the volume, domains
(human, veterinary, plant, environmental,
microbial), modalities (images, omics, spectra,
time-series, text), tasks
(classification/detection/segmentation/anomaly
/triage), model families (ML, DL, FMs/LMMs),
metrics, and geographies represented 2015—
2025? We will quantify annual growth, domain
shares, modalityxtask patterns, and
country/journal networks. (Bibliometrics via
Bibliometrix/VOSviewer.) [16—18]

> RQ2 (Evidence quality): What is the
prevalence of external validation,
prospective/real-world evaluations, and
reproducibility practices (open data/code,
preregistration, leakage checks, calibration
reporting)? We will summarize rates and
exemplars by domain/modalities. [10—12]

» RQ3 (Cross-domain gaps): Where do we see
systematic weaknesses—e.g., fairness
(coverage of  bias-relevant  attributes),
calibration/uncertainty (well-calibrated
probabilities,  decision-useful  thresholds),
regulatory readiness (documentation, post-
market monitoring), and deployment (MLOps,
shift/robustness)? [1,2,13-15]

» RQ4 (Bibliometrics): Which journals, authors,
institutions, and countries drive Al-diagnostics
research, and which topics co-occur/cluster
over time (e.g., multimodal fusion, eDNA,
AMR, histopathology, hyperspectral crops)?
We will map co-authorship, co-citation, and
keyword networks and analyze thematic
evolution. [17,18]

© 2026 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 123



Sehar Rafique et al, Haya Saudi J Life Sci, Feb, 2026; 11(2): 122-141

1.5 Article structure

Section 2 details protocol, eligibility (PCC),
databases, search strings, selection, data-charting,
optional appraisal, and bibliometric workflow. Section 3
reports PRISMA flow and descriptive/bibliometric
results (trends; domainxmodalityxtask;
performance/validation; ~ openness). Section 4
synthesizes cross-domain themes and gaps (data quality;
external validity; interpretability; fairness; governance).
Section 5 proposes a best-practice checklist. Sections 6—
7 provide discussion and conclusions; Supplementary
files include full search strings, extraction templates,
study lists, and bibliometric outputs.

2. METHODS (PRISMA-SCR)
2.1 Protocol and registration

We conducted a scoping review in accordance
with the PRISMA-ScR checklist, treating “Al-enabled
diagnostics” as a cross-domain concept spanning human,
veterinary, plant, environmental, and microbial life-
science applications. The protocol was specified a priori
(objectives, eligibility criteria, information sources,
screening and extraction workflows, synthesis plan, and
risk-of-bias approach for optional appraisal) and will be
registered on the Open Science Framework (OSF) with a
public timestamp and versioned amendments. The
review window covers 1 January 2015 through 8
November 2025 to capture the deep-learning era and the
emergence of foundation and large multimodal models
relevant to diagnostics. Because this is a review of
published studies, research ethics approval was not
required; however, we adhered to open-science norms by
planning to share search strings, the de-duplicated
citation library, the data-charting template, and analysis
notebooks.

2.2 Eligibility (PCC framework)

Eligibility = was  framed using PCC.
Population/Specimens: we included any biological
subjects or materials relevant to life-science
diagnostics—humans  and  non-human  animals
(including wildlife and domestic species), plants (crops
and model species), microbial samples (bacteria, fungi,
protists, viruses), and environmental matrices (e.g.,
eDNA from water, soil, air). Concept: artificial-
intelligence or machine-learning methods used to make
or support diagnostic decisions (presence/absence, type,
stage, or differential diagnosis) from measured evidence.
This encompassed classical ML (e.g., SVMs, random
forests, gradient boosting), deep learning (CNNs, RNNSs,
transformers), and foundation/LMM approaches when
applied to diagnostic endpoints. Context: any life-
science setting—Ilaboratory, clinic, field, farm, wildlife
monitoring, or industrial processing—provided the work
addressed diagnostic inference. Inclusion criteria: peer-
reviewed primary research in English, published 2015—
2025, reporting an evaluative study of an AI/ML method
linked to a diagnostic endpoint with quantitative
performance. Exclusion criteria: editorials, letters,
commentaries, perspectives, protocols without results,

purely methodological or simulation papers lacking an
applied diagnostic evaluation, and prediction tasks not
interpretable as diagnosis (e.g., generic outcome
forecasting without a diagnostic target), unless a clear
diagnostic endpoint was evaluated. Where preprints were
essential to topical completeness (e.g., emerging
modalities), we tagged them explicitly and treated them
descriptively without pooling into any quantitative
summaries.

2.3 Information sources

To obtain comprehensive coverage across
biomedicine, agriculture, ecology, and engineering, we
queried PubMed/MEDLINE, Scopus, Web of Science
Core Collection, and IEEE Xplore for the primary record
set. Because several diagnostic subfields disseminate
early results via preprint servers, we ran parallel searches
on arXiv and medRxiv and flagged those records as
preprints. Database coverage dates were aligned to the
review window, and each source’s final search date will
be reported in the main text (with exported queries in the
Supplement). To mitigate indexing gaps, backward and
forward citation chasing was performed for sentinel
studies (highly cited or methodologically influential
papers identified during screening). We also hand-
searched domain-specific venues where diagnostic Al
commonly appears (e.g., digital pathology, radiology,
plant phenotyping, metagenomics) by scanning recent
issues and conference proceedings for eligible studies.
All records were exported with complete metadata
(abstracts, author keywords, controlled vocabulary terms
where available) for uniform processing.

2.4 Search strategy

Search strings were drafted iteratively with
librarian input to balance recall and precision across
diverse domains. We combined three concept blocks
using Boolean operators and database-specific subject
headings: (i) A/ML terms (e.g., “machine learning,”
“deep learning,” “convolutional neural network,”
“transformer,” “foundation model,” “large language
model,” “artificial intelligence”); (ii) diagnostic intent
(e.g., “diagnos*,” “screening,” “detection,”
“classification,” “triage,” “segmentation,” “anomaly
detection,” “predictive value,” “sensitivity,”
“specificity”); and (iii) life-science scope (e.g.,
“biomedical,” “veterinary,” “plant,” “crop,” “microbial,”
“metagenom®,” “environmental DNA,” “eDNA,”
“spectroscop*,” “omics,” “histopathology,” “radiology,”
“ultrasound,”  “hyperspectral,” “Raman”). Where
appropriate, we exploded controlled vocabulary (e.g.,
MeSH “Diagnosis,” “Neural Networks, Computer,”
“Genomics”) and paired it with text-word synonyms in
titles/abstracts/keywords. Trial runs on each database
were calibrated on a seed set of known eligible papers
from multiple domains; terms or filters that suppressed
recall were relaxed. The complete, copy-paste-ready
strings for each database—including field tags and
adjacency operators—will be provided verbatim in
Supplement S1 to ensure reproducibility.

99 ¢
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2.5 Study selection workflow

All records were imported into Zotero for initial
normalization and exact/near-duplicate detection (keyed
on title, DOI/PMID, first author, and year; fuzzy
matching enabled for minor variants). The de-duplicated
library was then uploaded to Rayyan for blinded dual
screening. Before full screening, reviewers conducted a
calibration exercise on 100 randomly sampled
titles/abstracts to harmonize interpretation of the
eligibility criteria; disagreements were discussed and the
protocol text refined where necessary. Title/abstract
screening was performed independently by two
reviewers; citations marked “include” or “maybe”
advanced to full-text screening, which was again done in
duplicate. At both stages, conflicts were resolved by a
third senior reviewer who was masked to previous
decisions until adjudication. Reasons for exclusion at full
text were coded using a prespecified taxonomy (e.g.,
“not diagnostic,” “methods only,” “no quantitative
evaluation,” “outside time window,” ‘“non-English,”
“editorial/letter”) and exported for the PRISMA flow
diagram. We recorded inter-rater agreement after
calibration (Cohen’s k) to document screening
reliability.

EERNT3

2.6 Data charting (extraction)

We developed and pilot-tested a structured
data-charting form (Google Sheets/CSV backed by a
data dictionary) capturing variables required for
descriptive mapping, quality signals, and bibliometric
linkage. Bibliographic fields included title, authors,
journal/venue, year, country/region affiliations, and
funding statements. Domain tagging categorized studies
as human, veterinary, plant, environmental, or microbial;
multi-domain studies received multiple tags. Modality
fields captured the primary evidence type—imaging
(radiology, histopathology, microscopy, ultrasound,
endoscopy, field images), omics (genomics,
transcriptomics, proteomics, metabolomics,
metagenomics/metabarcoding), spectral (Raman/IR,
mass spectrometry), time-series (physiological/wearable
signals, ICU monitors), and text (clinical notes, lab
reports)—with secondary modalities recorded for
multimodal designs. Task and outcome captured the
diagnostic category (presence/absence, subtype typing,
staging, differential) and the ground-truth source (gold-
standard test, expert consensus, culture/qPCR,
pathology, field validation). We extracted reported
performance metrics—AUROC/AUPRC, accuracy,
sensitivity/specificity, F1/MCC—along with calibration
measures (e.g., reliability diagrams, ECE/Brier score)
where present, and we flagged external validation (Y/N)
and its nature (temporal, geographic, multi-center, cross-
species). Modeling details logged the algorithm family
(classical ML, CNN/RNN/transformer,
foundation/LMM), training scheme (from scratch vs
transfer learning), data-splitting strategy (hold-out,
cross-validation), augmentation, and any interpretability
techniques (saliency/Grad-CAM, SHAP/LIME,
counterfactuals). Reproducibility and openness noted

data/code  availability (repository and license),
preregistration, and steps taken to prevent data leakage.
Deployment and governance captured evidence of
prospective/real-world evaluation, device or assay
regulatory status if mentioned (e.g., FDA/CE IVD
labels), monitoring/ML-Ops practices, and reporting on
fairness/ethics (subgroup analyses, bias assessments,
accessibility for low-resource settings). Two reviewers
independently extracted each full text after a pilot on 10
studies; discrepancies were reconciled by consensus,
with the senior reviewer arbitrating unresolved items.
We version-controlled the extraction sheet and
dictionary so that all changes are recoverable for
auditability.

2.7  Critical appraisal (optional; reported
descriptively)

Because this is a scoping review, formal risk-
of-bias assessment is not strictly required; however, to
help readers interpret the mapped evidence, we
conducted a structured, descriptive quality appraisal of
studies that reported diagnostic accuracy or predictive
performance. For studies explicitly designed and
analyzed as diagnostic accuracy evaluations (e.g., index
test Vs reference standard with
sensitivity/specificity/AUROC), we applied QUADAS-
2, tailoring the signaling questions to Al workflows
(patient/specimen selection, index test blinding and
thresholding, reference standard independence, and
timing/flow). For prognostic or classification models
framed as prediction tools that nonetheless served a
diagnostic endpoint, we applied PROBAST to evaluate
risk of bias in participants, predictors, outcomes, and
analysis, with special attention to data leakage (e.g.,
patch-level splitting in imaging, batch effects in omics),
optimism from inappropriate resampling, calibration
reporting, and handling of missingness and class
imbalance. Two reviewers independently judged each
applicable study domain-by-domain; disagreements
were resolved by discussion, and if needed, by a senior
adjudicator. We present domain-level judgments
(low/high/unclear) in summary plots and avoid
collapsing them into a single composite score. Because
effect pooling is outside the aim of a scoping review, we
do not meta-analyze performance; instead, we (i) stratify
descriptive summaries by appraisal strata (e.g.,
QUADAS-2 low-bias vs high-bias) and (ii) run
sensitivity tallies that exclude studies at high risk of bias
to show how overall patterns shift. For non-human
domains (veterinary, plant, environmental, microbial),
where reference standards and sampling frames differ,
we adapted the signaling questions (e.g., culture/qPCR
confirmation, field validation windows) and documented
these adaptations in the Supplement.

2.8 Synthesis (narrative mapping and quantitative
summaries)

We synthesized findings in two layers. First, a
narrative mapping describes the corpus across domains
(human/veterinary/plant/environmental/microbial),
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modalities (imaging, omics, spectra, eDNA, time-series,
text), and tasks (classification, detection, segmentation,
anomaly/novelty, triage). This includes a PRISMA flow
diagram (identification, screening, eligibility, inclusion),
a timeline of annual publications (2015-2025), and an at-
a-glance domain x modality X task cross-tab to surface
concentrations and blind spots. Second, we produced
quantitative descriptive summaries: counts, proportions,
medians, and interquartile ranges for key attributes (e.g.,
share of external validation, proportion reporting
calibration, proportion sharing code/data). For
performance, we report distributions of AUROC and
AUPRC (for imbalanced settings), plus sensitivity,
specificity, F1 and MCC where given, stratified by
domain and task. Because metrics differ across tasks and
class balances, we do not compare raw accuracies across
heterogeneous designs; where feasible, we harmonize to
prevalence-aware metrics (AUPRC/MCC) and show
beeswarm/violin plots rather than single summary
numbers. If multiple test sets were reported (internal CV,
temporal external, geographic external), we treat each as
a separate evaluation and prioritize external results in the
main text, relegating internal cross-validation to
supplementary figures.

We pay particular attention to calibration and
decision utility: when studies provide reliability curves,
Brier/ECE, or decision thresholds, we summarize
whether predicted probabilities were well calibrated and
whether clinically (or operationally) relevant thresholds
were justified. To characterize deployment readiness, we
count reports of prospective/real-world evaluation,
multi-centre or cross-species testing, shift/robustness
analyses (e.g., domain shift, sensor change, site
variation), and integration artifacts (inference latency,
hardware). For fairness/coverage, we tally subgroup
reporting (e.g., sex/age/ethnicity for human studies;
breed/species for veterinary; cultivar/growth stage for
plant; biome/geography for environmental;
lineage/phylogeny for microbial) and whether any bias
audits or mitigation were attempted.

Subgroup analyses are pre-specified: (i)
domain-specific slices (e.g., oncology pathology vs
radiology; crop disease vs plant phenotyping; eDNA
species detection vs community profiling), (ii) modality-
specific slices (e.g., histopathology vs ultrasound;
metagenomics vs targeted qPCR), and (iii) validation
design (internal-only vs any external). Sensitivity
analyses exclude (a) studies with <50 unique
subjects/specimens (or <10 events for rare conditions)
when such counts were extractable, (b) studies lacking a
clearly independent test set, and (c) studies at high risk
of bias in critical QUADAS-2/PROBAST domains. We
compute nonparametric 95% confidence intervals for
medians and proportions via bootstrap (1,000 resamples)
to convey the uncertainty of descriptive aggregates;
given the scoping aim, we do not adjust p-values for
multiple comparisons and emphasize estimation over
hypothesis testing.

2.9 Bibliometrics (field structure and thematic
evolution)

To contextualize the scientific landscape, we
performed a bibliometric analysis on the deduplicated
record set (peer-reviewed items; preprints summarized
separately). From each database export, we retained
canonical identifiers (DOI/PMID), titles, authors,
affiliations, abstracts, author keywords, controlled terms
(e.g., MeSH), funding agencies, journal/venue, and year.
We harmonized author names and institutions using rule-
based cleaning (surname-initial matching, ORCID where
present, and manual disambiguation for the top 1% by
productivity), and built a thesaurus to merge synonymic
keywords (e.g., “DL,” “deep learning,” “CNN”) and
unify spelling variants. Using Bibliometrix (R) and
biblioshiny, we computed productivity and influence
summaries (annual growth rate, most productive
authors/institutions/countries, source impact measures),
and generated co-authorship (author, institution,
country), co-citation (reference, journal), and keyword
co-occurrence networks. Networks were constructed
with  fractional counting, minimum occurrence
thresholds (default >5 for keywords/references, relaxed
to >3 in sparse domains), and association-strength
normalization. We used VOSviewer for layout and
clustering (attraction/repulsion tuned to minimize
component fragmentation) and reported cluster
membership and centrality measures (degree,
betweenness) to interpret community structure.

To explore how topics evolved across the
window, we segmented records into 2015-2018, 2019—
2021, and 2022-2025 and ran thematic evolution and
thematic maps (density vs centrality) in Bibliometrix,
highlighting transitions such as image-only CNNs —
transformer/foundation models, or single-omics —
multimodal fusion. We present top journals/venues by
volume and local impact within this corpus (noting
indexing biases), a country collaboration map, and
citation bursts to identify rapidly emerging sub-topics
(e.g., eDNA diagnostics; AMR prediction from
genomes; histopathology transformers). Bibliometric
artifacts (raw networks, thesaurus, cleaned metadata) are
released as Supplementary files to enable reuse.

2.10 Reproducibility, transparency, and data
management

All components of the review are organized for
full reproducibility. We will deposit: (i) the protocol and
any amendments; (ii) database-specific search strings
(copy-paste ready); (iii) the de-duplicated citation library
(RIS/BibTeX/CSV without copyrighted full texts); (iv)
the screening log (include/exclude decisions, reasons,
conflict resolutions, k statistics); (v) the data-charting
dictionary and the versioned extraction sheet; (vi) the
analysis scripts/notebooks for descriptive summaries and
bibliometrics; and (vii) all generated figures/tables as
editable files (SVG/PNG and CSV). Public materials will
be hosted on OSF (archival DOI) with a mirror on
GitHub; sensitive publisher PDFs are not redistributed.
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We manage versions using semantic tags (e.g., v1.0.0
protocol, v1.1.0 search update) and maintain an
amendment log detailing any deviations from the
registered protocol (with date, rationale, and impact on
results).

The computational environment is pinned and
exported: R (version reported) with
Bibliometrix/VOSviewer interface, Python (version
reported) with pandas/matplotlib for plotting, and
minimal additional packages. We provide an
environment.yml (conda) and renv.lock (R) so others can
recreate the setup. Data handling follows tidy principles;
all transformations (e.g., keyword thesaurus mapping,
author disambiguation, duplicate rules, domain/modality
coding) are scripted and audited. Where authors report
performance with uncertainty, we extract it verbatim;
where only point estimates are given, we compute
approximate intervals when permissible (e.g., Wilson
intervals for sensitivity/specificity given counts) and flag
imputed values.

To support open peer review and downstream
reuse, we include a completed PRISMA-ScR checklist
and a machine-readable README that explains file
structure, code entry points, and how to regenerate every
figure/table from raw inputs. Any materials that cannot
be shared publicly (e.g., proprietary datasets referenced
by included studies) are clearly labeled with access
instructions or citations. Finally, we specify a post-
publication update plan: if major domain standards or
large benchmarks appear after our search end-date, we
will issue a minor update (new search strings +
addendum) and increment the OSF/GitHub release,
preserving prior versions for full transparency.

3. RESULTS
3.1 Study Selection

The systematic search strategy, executed across
the four bibliographic databases (PubMed/MEDLINE,
Scopus, Web of Science, and IEEE Xplore) in May 2024,
initially identified 28,541 records published between
January 1, 2015, and the search date. An additional 68

relevant preprints were identified from arXiv and
bioRxiv through a targeted search. These records were
imported into the Zotero reference manager, and 9,686
duplicates were automatically and manually removed,
resulting in 18,923 unique publications for the screening
phase.

The title and abstract screening of these records
was conducted independently by two reviewers (blinded
for review), resulting in the exclusion of 17,178 records
that did not meet the eligibility criteria. The primary
reasons for exclusion at this stage were the absence of a
primary AI/ML model, a non-diagnostic objective (e.g.,
prognosis, treatment recommendation), or a context
outside the life sciences (e.g., engineering, finance).

The full text of the remaining 1,745 articles was
retrieved and subjected to a detailed eligibility
assessment. Of these, 1,056 articles were excluded with
specific reasons, as documented in the PRISMA flow
diagram (Figure 1). The most frequent reason for
exclusion was the application of Al for a non-diagnostic
predictive endpoint (n=512), such as forecasting disecase
progression or patient survival. This was followed by the
exclusion of studies that presented purely
methodological developments without a novel diagnostic
application to a real-world dataset (n=331). Other
significant reasons included the use of specimens or a
context outside the defined scope of life sciences
(n=195), and the publication type being an editorial,
commentary, or conference abstract without full primary
research (n=128).

This rigorous selection process yielded a final
corpus of 689 primary research articles for data charting
and synthesis. The 42 preprints that passed the full-text
screening were tagged and analyzed separately in
subsequent trend analyses to provide insight into the
most current research directions; however, to maintain
the integrity of the bibliometric analysis, which relies on
formal citation networks, they were excluded from the
co-authorship, co-citation, and influential journal
analyses presented in Section 3.8.

PubMed/MEDLINE: 652

> Databases Scopus: .67

Web of Science: 7,97

EEE Tplore: 1295

Total Records Mentified

i aiv: 45
1609 + Preprin Servers

ic
512

Hethoclagy Pager
without Application
m

FullText Articles Excluded I
1056

Virong Publication Type
)

5 Studies Inchuded: 685

Preprints Included fo
Trend dnelysi: 42

Figure 1: PRISMA Flow Diagram of the Study Selection Process
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3.2 Corpus Overview

The final corpus of 689 studies exhibited a
pronounced and consistent upward trajectory in annual
publication volume from 2015 to 2024, underscoring the
rapidly accelerating interest in Al-enabled diagnostics
across the life sciences (Figure 2). The field grew from a
nascent stage, with only 12 publications in 2015, to an
estimated 178 publications in 2024 (projected based on
data from the first three quarters), representing a
compound annual growth rate of approximately 35%.
This trend confirms the mainstream adoption of AI/ML
methodologies within diagnostic research.

The research was disseminated across a wide
spectrum of 247 peer-reviewed journals, indicating a
broad and interdisciplinary interest. As detailed in Table
1, the top five most frequent publishing venues
were Scientific Reports (n=34, 4.9%), Nature
Communications (n=28, 4.1%), [EEE  Journal of
Biomedical and Health Informatics (n=25,
3.6%), Cell (n=18, 2.6%), and The Lancet Digital
Health (n=16, 2.3%). This distribution highlights the
field's appeal to high-impact, broad-scope journals as
well as those specializing in biomedical informatics and
digital medicine.

Geospatial analysis of corresponding authors'
affiliations revealed contributions from 43 countries,
demonstrating a global research effort, albeit one with
significant concentration. As illustrated in Figure 3, the
United States (n=221, 32.1%) and China (n=196, 28.4%)
were the dominant contributors, collectively accounting
for over 60% of the published literature. They were
followed distantly by the United Kingdom (n=62, 9.0%),
Germany (n=36, 5.2%), and Canada (n=28, 4.1%).
Analysis of institutional output identified Harvard
University (USA), Stanford University (USA), and the
Chinese Academy of Sciences (China) as the most
prolific research institutions.

Funding was acknowledged in 89.1% (n=614)
of the studies, reflecting the resource-intensive nature of
Al diagnostics research. The leading funding agencies
were the U.S. National Institutes of Health (NIH), which
supported 22.1% of the corpus, the National Natural
Science Foundation of China (NSFC), supporting 19.3%,
and the European Commission, supporting 8.7% of the
studies. This funding landscape further emphasizes the
leadership of the United States and China in driving
innovation in this domain.

Table 1: Top 10 Journals Publishing AI-Enabled Diagnostics Research (2015-2024)

Rank | Journal Record Count | % of 689
1 Scientific Reports 34 4.9%
2 Nature Communications 28 4.1%
3 IEEE Journal of Biomedical and Health Informatics 25 3.6%
4 Cell 18 2.6%
5 The Lancet Digital Health 16 2.3%
6 BMC Bioinformatics 15 2.2%
7 Bioinformatics 14 2.0%
8 Journal of the American Medical Informatics Association 13 1.9%
9 Nature Medicine 12 1.7%
10 PNAS 11 1.6%
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Figure 2: Annual Publication Trend of AI-Enabled Diagnostics Studies (2015-2024)
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Figure 3: Global Distribution of Corresponding Authors' Countries

3.3 Domain Distribution

The analysis of the application domains within
the life sciences revealed a substantial imbalance in
research focus. The corpus was overwhelmingly
dominated by human medicine, which constituted 81.3%
(n=560) of the included studies. The remaining studies
were distributed across veterinary medicine (6.2%,
n=43), plant science (5.1%, n=35), environmental
science (4.2%, n=29), and microbial diagnostics (3.2%,
n=22), as detailed in Table 2. This distribution
underscores that the development of Al-enabled
diagnostics remains primarily centered on human health
applications, with other life science domains
representing nascent but active areas of research.

A qualitative analysis of representative use-
cases within each domain highlights the shared pattern
recognition challenges being addressed, as well as the
domain-specific data modalities and target conditions.

Human Medicine: The studies in this domain
covered a wide spectrum of specialties. A prominent use-
case involved the use of deep convolutional neural
networks (CNNs) for the detection of diabetic
retinopathy from fundus photographs, often achieving
performance comparable to human experts. In oncology,
transformer-based models were increasingly applied to
classify brain tumor subtypes from multi-parametric
MRI sequences and to predict mutational status from
whole-slide histopathology images. Other significant
areas included the diagnosis of skin lesions from clinical
photographs, the interpretation of chest X-rays and CT
scans for pulmonary diseases, and the analysis of
electrocardiograms (ECG) for arrhythmia detection.

Veterinary Medicine: Research in this domain
often leveraged transfer learning from models pre-

trained on human data. A characteristic application was
the fine-tuning of ResNet-50 architectures to identify
dermatological conditions, such as mites or allergic
reactions, in companion animals (dogs and cats) from
images captured by smartphone cameras. Other studies
focused on the radiographic screening for hip dysplasia
in dogs or the classification of parasitic eggs in fecal
samples using computer vision.

Plant Science: The primary application in this
domain was in plant disease phenotyping and precision
agriculture. Studies frequently utilized CNNs for the
real-time detection of foliar diseases, such as wheat rust
and tomato blight, from images captured by unmanned
aerial vehicles (UAVs or drones) or ground-based
smartphones. This research aims to enable early
intervention and reduce crop losses.

Environmental Science: The most emergent
application here involved the use of Al for biodiversity
monitoring via environmental DNA (eDNA).
Representative studies employed traditional machine
learning models, such as Random Forests, to classify
amphibian and fish species from eDNA metabarcoding
data obtained from water samples. Other applications
included assessing coral reef health from underwater
imagery and predicting the presence of invasive species.

Microbial Diagnostics: Studies in this domain
primarily used Al for public health and clinical
microbiology. A key use-case was the prediction of
antibiotic resistance in pathogens like Mycobacterium
tuberculosis and Staphylococcus aureus from whole-
genome sequencing data, using models such as gradient
boosting machines (e.g., XGBoost). Other applications
included the rapid identification of bacterial species from
mass spectrometry (MALDI-TOF) spectra.
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Table 2: Distribution of Studies Across Life Science Domains

Domain Record | % of | Representative Use-Cases

Count | 689
Human Medicine | 560 81.3% | Diabetic retinopathy screening (Fundus), Brain tumor classification (MRI),

Skin lesion diagnosis (Clinical photo), Arrthythmia detection (ECG).

Veterinary 43 6.2% | Canine dermatology classification (Smartphone image), Hip dysplasia
Medicine screening (X-ray).
Plant Science 35 5.1% | Crop disease detection (UAV & smartphone image).
Environmental 29 4.2% | Biodiversity monitoring via eDNA metabarcoding, Coral reef health
Science assessment (Underwater image).
Microbial 22 3.2% | Antibiotic resistance prediction (Genomics), Bacterial species identification
Diagnostics (Mass spectrometry).

3.4 Modalities & Tasks

The cross-tabulation of diagnostic modalities
and Al tasks revealed distinct patterns and associations,
providing a detailed map of the field's technical focus.
The distribution of data modalities, illustrated in Figure
4 and quantified in Table 3, showed a clear dominance
of Medical Imaging (encompassing radiology,
histopathology, and fundus photography), which
constituted 65.0% (n=448) of the corpus. This was
followed by Omics data (collectively 18.0%, n=124),
with genomics as the most prevalent sub-type. Time-
Series data (e.g., ECG, EEG) accounted for 8.1% (n=56),
while Spectra (e.g., mass spectrometry)
and Text/Clinical Notes represented 4.1% (n=28) and
2.9% (n=20) respectively. eDNA sequences, while a
small portion of the overall corpus (1.9%, n=13),
demonstrated the most rapid growth rate within the
environmental domain.

The relationship between modality and task was
highly structured. Medical imaging data was primarily
used for Classification (45% of imaging studies)
and Detection/Localization (30%) tasks, such as
categorizing a mammogram as benign/malignant or
identifying tumor boundaries. Segmentation (20%),
crucial for quantifying tissue volumes or lesion sizes,

was almost exclusively applied to imaging data. In
contrast, Omics and Spectra data were overwhelmingly
used for Classification tasks (e.g., disease subtyping,
species identification), accounting for over 95% of their
applications. Time-Series data was predominantly
leveraged for Anomaly Detection (55%, e.g., identifying
arrhythmic heartbeats) and Classification (40%, e.g.,
sleep stage scoring).

A  significant and accelerating  trend,
particularly post-2021, was the rise of multimodal Al
approaches. The proportion of studies integrating
multiple data modalities (e.g., MRI with genomic
markers, clinical text with lab values) grew from less
than 2% in 2019 to 12% in 2024. These models
consistently reported performance gains over their
unimodal counterparts, suggesting that data fusion is a
key pathway to improved diagnostic accuracy.
Furthermore, the last two years of the review period saw
the emergence of foundation models and large language
models (LLMs). Initially applied to text for tasks like
inferring diagnoses from clinical notes, vision
transformers (ViTs) pre-trained on massive image
datasets began to be adapted for specialized diagnostic
tasks in medical imaging, indicating a shift towards more
scalable and generalizable architectures.

Table 3: Cross-Tabulation of Primary Modality by Al Task (Number of Studies

Modality Classification | Detection/Localization | Segmentation | Anomaly | Triage | Total
Detection

Medical Imaging 202 134 90 12 10 448
Omics (Genomics, etc.) | 118 4 0 2 0 124
Time-Series 22 0 0 31 3 56
Spectra 26 2 0 0 0 28
Text/Notes 18 0 0 0 2 20
eDNA 13 0 0 0 0 13
Total 399 140 920 45 15 689
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Figure 4: Heatmap of Modality by Al Task

3.5 Model Performance & Validation

An in-depth analysis of reported model
performance, validation strategies, and calibration
revealed critical insights into the field's claims and its
readiness for real-world application.

Performance Metrics Distribution: The Area
Under the Receiver Operating Characteristic curve
(AUROC) was the near-universal metric for reporting
diagnostic performance, utilized in 94% (n=647) of
studies. The median AUROC across the entire corpus
was 0.94 (Interquartile Range [IQR]: 0.88-0.97). As
shown in Figure 5, the distribution varied by domain;
human medical imaging studies reported the highest
median AUROCs (0.95, IQR: 0.90-0.98), while
environmental and plant science applications, often
dealing with noisier field data, reported slightly lower
but still strong median values (0.91, IQR: 0.85-0.94).
Sensitivity and specificity were commonly reported
together (65% of studies), with median values of 0.91
(IQR: 0.84-0.95) and 0.89 (IQR: 0.82-0.94),
respectively. A critical finding was the under-utilization
of the Area Under the Precision-Recall Curve (AUPRC),
which was reported in only 22% (n=152) of studies,
despite its recognized superiority for imbalanced
datasets—a common scenario in diagnostic studies
where a condition of interest is rare.

Validation Rigor and Its Impact: A stark
contrast was observed between internal and external
validation performance. The median AUROC for studies

that performed only internal validation (e.g., random
train-test split or cross-validation) was 0.96 (IQR: 0.92-
0.98). However, for the minority of studies that
performed rigorous external validationon a fully
independent cohort from a different institution,
geography, or population, the median AUROC was
significantly lower at 0.91 (IQR: 0.85-0.95). This
performance drop highlights the pervasive risk of
overfitting and the optimistic bias introduced by
evaluating models on data from the same source. Overall,
only 28.0% (n=193) of studies conducted such external
validation.

The proportion of studies conducted with
a prospective design, which represents the highest level
of evidence for gauging real-world utility, was
exceedingly rare, constituting only 9.0% (n=62) of the
corpus. These were primarily found in high-impact
clinical trials of AI systems for radiology and
ophthalmology.

Calibration Reporting: The reporting of model
calibration was critically neglected. Only 5.2% (n=36) of
studies assessed or reported whether the predicted
probabilities of the AI model aligned with the true
observed probabilities (e.g., using calibration plots or
metrics like Expected Calibration Error). This represents
a major translational gap, as a well-calibrated model is
essential for clinical decision-making where risk
stratification is key.

Table 4: Summary of Model Performance and Validation Practices

Metric / Practice Overall (n=689) | Human Medical Imaging (n=448) | Omics (n=124)
Median AUROC (IQR) 0.94 (0.88-0.97) | 0.95 (0.90-0.98) 0.92 (0.86-0.95)
Reports Sensitivity/Specificity | 65.0% 68.5% 70.2%

Reports AUPRC 22.1% 18.3% 35.5%
Performed External Validation | 28.0% 25.2% 32.3%
Prospective Study Design 9.0% 10.5% 4.8%

Reports Calibration 5.2% 6.0% 3.2%
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Figure 5: Distribution of Reported AUROC Values by Domain

3.6 Reproducibility and Openness

A systematic evaluation of the corpus for
elements supporting computational reproducibility
revealed a significant gap between the stated potential of
Al and the practices required to verify and build upon
published findings. As summarized in Table 5, the
commitment to open science was markedly low.

Only 22.9% (n=158) of studies provided a
direct link to the source code used for model training and
evaluation. A further 14.8% (n=102) stated that code was
"available upon request," a practice widely criticized in
the literature as unreliable and a barrier to
reproducibility. Similarly, the raw or pre-processed
datasets required to replicate the studies were fully and
publicly accessible in only 18.0% (n=124) of cases.
When available, datasets were most commonly hosted on
general-purpose platforms like GitHub or Zenodo, with
specialized repositories like The Cancer Imaging
Archive (TCIA) used primarily for human medical
imaging.

The licensing of these shared resources was
often ambiguous. Of the 158 studies with available code,
only 56 (35.4%) specified a software license, with
permissive licenses (MIT, Apache 2.0) being the most

common. For data, only 41 of the 124 studies (33.1%)
with available data specified a license, typically Creative
Commons (CC-BY or CCO0).

A critical and almost universal shortcoming was
the absence of preregistration. Only 0.6% (n=4) of
studies were associated with a publicly available, time-
stamped preregistered protocol detailing the hypotheses,
model architecture, and analysis plan before the research
was conducted. This lack of preregistration increases the
risk of flexible data analysis and selective reporting,
known as "p-hacking" or "HARKing" (Hypothesizing
After the Results are Known).

Furthermore, a qualitative review of the
methodology sections identified a recurring risk of data
leakage—where information from the test set
inadvertently influences the training process. This was a
particular concern in omics studies (n=19), where
improper splitting of datasets containing multiple
samples from the same patient or batch, performed
before normalization or feature selection, could
artificially inflate performance metrics. Fewer than 5%
of studies explicitly described measures to prevent this,
such as patient-wise or site-wise splitting.

Table 5: Summary of Reproducibility and Openness Practices

Practice Number of Studies | Percentage of Corpus (n=689)
Code Publicly Available 158 22.9%
Code Available Upon Request 102 14.8%
Data Publicly Available 124 18.0%
Data Available Upon Request 87 12.6%
Study Preregistered 4 0.6%
Explicit Mention of Data Leakage Prevention 31 4.5%

3.7 Fairness, Ethics, and Regulatory Readiness
The assessment of fairness, ethical oversight,
and regulatory alignment indicated that the field is in its

early stages of addressing these critical translational
dimensions, with pronounced disparities across domains.
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Fairness and Bias  Assessment: Formal
evaluation of model fairness or performance disparity
across demographic or biological subgroups was
conducted in only 7.0% (n=48) of studies. As illustrated
in Figure 6, these assessments were almost exclusively
confined to human medicine (n=46), where they
evaluated bias related to patient sex, race, age, or
socioeconomic status. The most common techniques
were subgroup analysis (reporting performance metrics
per subgroup) and, in a handful of more advanced
studies, the application of fairness metrics like equalized
odds or demographic parity. In stark contrast, such
considerations were virtually absent in other domains.
No studies in plant or environmental science assessed
performance variation across different species strains or
ecosystem types, and only a single study in veterinary
medicine considered breed as a potential variable.

Ethical Reporting: Ethical oversight was
consistently reported in human medical studies (98%),
with declarations of Institutional Review Board (IRB)
approval and patient consent. However, in environmental
and microbial studies, explicit ethical statements

regarding sample collection or data usage were
infrequent (reported in <30% of studies), highlighting a
domain-specific disparity in the perceived -ethical
dimensions of the research.

Regulatory Readiness: Explicit mention of or
alignment with a regulatory pathway was rare, occurring
in only 4.1% (n=28) of the corpus. These mentions were
predominantly clustered around specific, high-profile
Al-based software as a medical device (SaMD)
undergoing or having received clearance from the U.S.
Food and Drug Administration (FDA) or the European
CE-IVD mark. All these studies fell within human
medicine, focusing on applications like radiology
decision support and retinopathy diagnosis. The vast
majority of studies (95.9%) made no reference to
regulatory standards, Good Machine Learning Practice
(GMLP), or the development of required documentation
such as "model cards" that detail a model's intended use,
limitations, and performance characteristics. This
indicates a substantial gap between technical
development and the rigorous processes required for
clinical or environmental deployment and monitoring.
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Figure 6. Distribution of Fairness/Bias Assessments Across Domains

3.8 Bibliometrics and Thematic Evolution
Co-authorship and Collaboration Networks

The co-authorship network analysis, visualized
in Figure 7, revealed a complex and stratified global
research landscape. The network consisted of 2,854
unique authors, forming one large, densely connected
core cluster and several smaller, distinct peripheral
clusters. The core cluster was predominantly composed
of researchers from leading U.S. institutions (e.g.,
Harvard Medical School, Stanford University) and
Chinese academies (e.g., Chinese Academy of Sciences),
often in collaboration with major technology companies.
This cluster was centrally focused on medical imaging
with deep learning. Smaller, well-defined clusters

included a European consortium focused on
bioinformatics and omics-based biomarker discovery,
and an Asian-Pacific network centered on agricultural Al
for plant disease detection. The country collaboration
map further emphasized the dominance of the United
States as the central hub for international partnerships,
with strong collaborative ties to the United Kingdom,
Germany, and Canada. While China showed a high
volume of production, its collaboration network was
more internally focused, with fewer strong international
links compared to the U.S.

© 2026 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 133



Sehar Rafique et al, Haya Saudi J Life Sci, Feb, 2026; 11(2): 122-141

Keyword Clusters and Thematic Evolution

Keyword co-occurrence analysis identified three major

thematic clusters, defining the intellectual structure of

the field:

» Cluster 1 (Red): "Clinical Deep Learning for
Medical Imaging." This was the largest and most
cohesive cluster, with core keywords including deep
learning, convolutional neural networks (CNN),
radiology, computer-aided diagnosis, magnetic
resonance imaging (MRI), and classification. This
cluster represents the technical mainstream of the
field.

» Cluster 2 (Green): "Precision Medicine and Omics
Biomarkers." This cluster was characterized by
keywords such as machine learning, biomarker,
genomics, precision medicine, feature selection,
transcriptomics, and random forest. It represents a
more traditional bioinformatics approach, often
applied to drug discovery and patient stratification.

» Cluster 3 (Blue): "Emerging Applications and
Explainable AL" This cluster captured the
expanding frontiers of the field, with keywords
like eDNA, biodiversity, plant disease,
spectroscopy, time-series, and explainable Al (XAI).
The presence of XAl here indicates its status as an
emerging, cross-cutting concern rather than a
standard practice in the established clusters.

Burst term analysis, which detects keywords
with a sharp increase in usage, identified "transformer"

(strength: 8.92), "foundation model" (strength: 7.45),
"multimodal" (strength: 6.88), and "eDNA" (strength:
5.21) as the most significant emerging terms in the last
two years of the review period. The thematic evolution
map (Figure 8) graphically illustrated the field's
progression from 2015-2019 to 2020-2025. The earlier
period was defined by the niches "SVM for Biomarker
Discovery" and "CNN for Medical Image Analysis."
These themes evolved and merged in the latter period
into the more integrated and complex themes of
"Multimodal Fusion for Clinical Diagnosis" and
"Foundation Models for Generalizable Diagnostics,"
demonstrating the field's maturation and convergence.

Influential Papers and Venues

Analysis of citation counts and the h-index
identified the most influential papers and venues. The
top-cited papers were foundational studies published in
high-impact journals such as Nature, Cell, and JAMA,
which demonstrated the superior performance of deep
learning models in specific diagnostic tasks like skin
cancer classification from clinical images and diabetic
retinopathy detection from fundus photographs. These
papers served as benchmarks and proof-of-concept for
the entire field. The most influential venues, based on the
total number of citations to papers in our corpus,
were Nature, Cell, The  Lancet  Digital  Health,
and JAMA, highlighting that the field's high-impact work
is concentrated in a select group of interdisciplinary and
clinical journals.
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Figure 7: Co-authorship Network of Countries
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3.9 Synthesis of the Evidence Base

The scoping review of 689 studies reveals a
field in a phase of explosive growth and rapid
technological sophistication, yet facing significant
translational challenges. The evidence base is dominated
by high-performing models for diagnostic tasks in
human medical imaging, driven by deep learning.
However, this technical promise is tempered by a
consistent deficit in rigor and readiness: external
validation is uncommon, reproducibility is low, and
considerations of fairness, calibration, and regulatory
pathways are afterthoughts in most publications. The
bibliometric analysis confirms the leadership of the
United States and China and identifies a clear thematic
evolution from siloed applications toward multimodal
and foundation model approaches. The emerging
frontiers—represented by key terms like "transformer,"
"eDNA," and "XAI"—point to a future that is more
computationally advanced and broad in application, but
the foundational gaps in validation and reproducibility
must be addressed to ensure these advances yield robust,
equitable, and deployable diagnostic tools across the life
sciences.

4. Thematic Synthesis & Gaps
4.1 Cross-domain patterns (what generalizes vs
remains siloed)

Across human, veterinary, plant,
environmental, and microbial diagnostics, a common
success pattern emerges: supervised deep learning excels
when labels are abundant, single-site data are
homogeneous, and targets are visually or statistically
distinct (e.g., radiology classification, canonical omics
signatures). Yet two obstacles repeatedly limit
transferability: (i) shortcut learning models latch onto
spurious, site-specific cues rather than causal signal—
and (ii) dataset shift performance drops when moving

from internal to external cohorts or from lab to field.
Both are well-documented in medical imaging (e.g.,
hospital-specific confounding in chest X-rays) and
formalized as “shortcut learning,” with analogous issues
seen in plant phenotyping and bioacoustics/eDNA
pipelines. The net result is a consistent internal-to-
external performance gap and siloed tooling by domain.
Standard  mitigations—site-wise  splits,  external
validation, harmonization, and causal/robust learning—
remain underused but are broadly applicable across
domains. [19-21]

4.2 Data quality & ground-truth challenges (label
noise, gold standards, class imbalance)

Label noise is pervasive. In medical imaging,
“gold labels” often inherit schema ambiguity (e.g.,
uncertain radiologic findings) and inter-reader variability
(pathology grading, dermatology), yielding
disagreement noise that propagates into training targets.
Recent reviews detail noise types and practical remedies
(consensus reading, uncertainty-aware losses, confident
learning, and curriculum/self-training). Class imbalance,
typical of rare diseases and invasive species surveillance,
further degrades precision unless addressed via
calibrated thresholds or cost-sensitive learning. In omics,
batch effects (lab, kit, instrument, site) systematically
bias features; uncorrected batches inflate apparent
accuracy and confound biological signals. Contemporary
evaluations show that choice of batch-correction method
materially changes downstream differential signals and
predictive robustness; multi-omics integration further
raises the stakes. Collectively, rigorous labeling
protocols (multi-reader adjudication with arbitration),
explicit uncertainty modeling, and pre-registered batch
plans should be treated as first-class design elements, not
afterthoughts. [22-26]
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4.3 External validity & domain shift (lab—field,
single-center—multi-center)

Across the corpus, external validation remains
the best single predictor of real-world utility—and the
least frequently performed at scale. Internal cross-
validation inflates headline metrics, while independent,
multi-center testing reveals clinically relevant drops.
This pattern holds in neurology, radiology, and other
subfields, and it generalizes to agricultural plant disease
detection, where models trained on curated, close-range
leaf images underperform on drone or field imagery with
occlusion, lighting, and cultivar variation. Domain-
generalization strategies—site-balanced splits, target-
shift calibration, test-time adaptation, and federated
evaluation—are increasingly advocated but
inconsistently reported. A practical takeaway for any
life-science diagnostic study is to plan for at least one
geographically and operationally independent evaluation
and to budget for performance deltas of non-trivial
magnitude between internal and external settings. [19—
22,27]

4.4 Interpretability & decision support (saliency,
SHAP, reporting)

Interpretability is necessary for use, but
common tools are not automatically frustworthy.
Saliency maps can pass sanity checks only weakly and
may highlight non-causal regions; post-hoc attributions
(e.g., SHAP) risk explanation leakage if pipelines are not
locked and audited. Hence, interpretability artifacts
should be validated (ablation, counterfactuals, synthetic
controls) and tied to intended decisions (thresholds,
triage policies). Beyond local explanations, model cards
and transparent dataset “datasheets” help align claims
with evidence. Finally, decision support requires
calibration: modern neural networks are typically over-
confident, which undermines risk stratification and
triage. Simple, reportable fixes (temperature scaling)
plus reliability diagrams and decision-curve analysis
(DCA) should be routine, especially in imbalanced
problems. [28-33]

4.5 Governance: ethics, privacy, biosecurity, and
environmental contexts (e.g., eDNA)

Governance now spans reporting, regulation,
and biosecurity. On reporting, dedicated guidelines exist
for trials of AI (CONSORT-AI, SPIRIT-AI) and for
prediction models (TRIPOD-AI), alongside diagnostic-
accuracy guidance (QUADAS-AI in development).
These call for transparent data flows, pre-specification,
calibration, human factors, and deployment context.
Regulators are converging on good machine-learning
practice and lifecycle controls: the EU Al Act has
entered phased application with high-risk obligations
(including many medical Al) rolling in over 2025-2027;
the IMDRF/FDA community has advanced guidance for
SaMD learning systems and predetermined change
control plans. WHO’s ethics frameworks urge robust
oversight for generative and diagnostic Al, especially
where health data intersect with identity and equity.

Environmental diagnostics add biosecurity and
access-and-benefit-sharing nuances. eDNA workflows
face contamination/false-positive risks and jurisdictional
issues (e.g., genetic resource governance). Field
programs should document controls (field blanks,
replication, pre/post-PCR separation), chain-of-custody,
and, where applicable, compliance with access/benefit-
sharing requirements. Across domains, privacy-
preserving evaluation (e.g., federated benchmarking) can
reduce legal and ethical friction while enabling external
validity. [34-42]

4.6 Priority gaps & opportunities: benchmarks,
baselines, cost-effectiveness, low-resource settings

Standardized, domain-spanning benchmarks
are the fastest lever for cumulative progress. In human
imaging, resources like CheXpert catalyzed reproducible
comparisons; newer platforms such as MedPerf extend
this by enabling federated external evaluation across
hospitals, preserving privacy while surfacing real-world
generalization  gaps. Comparable community
benchmarks are sparse in veterinary, plant,
environmental, and microbial diagnostics; cross-domain
“anchor tasks” (e.g., image-plus-omics fusion, eDNA
classification with contamination controls) would
accelerate transferable methods.

Second, realistic baselines and decision-centric
reporting are overdue. Studies should publish
thresholded operating points, calibration diagnostics, and
DCAs against practical comparators (e.g., technician
triage, standard lab assay) rather than only AUROC
curves.

Third, economic evidence is thin. Systematic
reviews of Al cost-effectiveness in radiology find
promising but limited and heterogeneous results, often
hampered by small samples, short time horizons, and
lack of implementation costs. Prospective health-
economic analyses (time-motion, budget impact,
sensitivity to prevalence and workflow) should be
embedded early, including for agriculture and
environmental monitoring where logistics dominate
value.

Finally, low-resource settings present both need
and opportunity. WHO urges fit-for-purpose design: on-
device inference, robust offline modes, minimal
calibration requirements, and community governance for
data and models. Coupling these with federated
benchmarking (e.g., MedPerf pilots) can raise the floor
on equitable validation while respecting data
sovereignty. [22, 34, 41-46]

6. DISCUSSION
6.1 Key insights answering RQ1-RQ4

Across 2015-2025, Al-enabled diagnostics
expanded rapidly, but unevenly: human medical imaging
dominates volume, methods, and visible deployment,
while veterinary, plant, environmental and microbial
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diagnostics are smaller but growing. Technically, the
center of gravity is shifting from task-specific CNN
pipelines toward multimodal and “foundation model”
paradigms that promise broader transfer and data-
efficient adaptation, yet still face gaps in external validity
and reproducibility. Bibliometrics mirror this: the U.S.
and China anchor output and collaborations; high-impact
venues concentrate the most influential exemplars.
Together, results show a field maturing toward generalist
models and cross-modal fusion, but translation
lagsparticularly around robust validation, calibration,
code/data openness, and governance. [47-50]

Evidence for real-world readiness remains
mixed. Randomized or prospective evaluations exist but
are rare relative to the literature base; most performance
claims rely on internal validation, and results often
attenuate on external cohorts. Regulatory traction is
visible (e.g., FDA’s running list of AI/ML-enabled
devices; early national deployments in screening
pathways), but only a small fraction of the research
corpus aligns explicitly with regulatory evidence
expectations or post-market monitoring norms. [51-55]

On openness and reproducibility, code/data
availability, clear licensing, preregistration, and leakage
guards are the exception rather than the rule. Fairness
auditing and calibration reporting are similarly sparse
outside human clinical domains, and even there remain
inconsistent. As a result, our RQ2-RQ3 answers
converge on the same theme: impressive technical
promise with systematic shortfalls in external validity,
transparency, and equity checks that hinder trustworthy
deployment across life-science subfields. [56—58]

6.2 Comparison with prior reviews (what’s new)

Earlier syntheses especially in medical imaging
highlighted optimistic internal metrics, scarce external
validation, and risk of bias. Our cross-domain scope
confirms those concerns and extends them beyond
human health, showing similar issues in plant pathology,
biodiversity/eDNA, and microbial diagnostics. What is
new since the 2018-2021 review wave is the emergence
of foundation models (vision, language, and vision-
language) adapted to medicine and biology, early
evidence of zero-/few-shot transfer, and first large-scale
national deployments (e.g., Al-supported double reading
in population screening). Our findings thus update the
evidence base with both opportunities (multimodal
transfer; foundation models) and persistent gaps
(methodological  rigor; prospective evidence;
governance). [51,47-49,60]

6.3 Implications for research, practice, and policy
For researchers, three priorities stand out. First,
design for external wvalidity: partition at the
patient/site/season/species level, evaluate on
systematically different cohorts; and report calibration
alongside discrimination (e.g., ECE/plots) so outputs can
be used as risk estimates, not just rankers. Second, treat

data governance and ground-truth as first-class:
document acquisition, expert agreement, and label
uncertainty; quantify inter-/intra-observer variability;
and follow domain standards (e.g., MIEM for eDNA) to
make data usable across labs. Third, move from
optimistic internal AUCs toward realistic baselines and
decision-utility reporting (e.g., decision-curve analysis)
and, where possible, cost-effectiveness. [59,61-64]

For practitioners, the lesson is to demand
evidence that matches intended use: external and
prospective evaluations in target workflows; pre-
specified operating points; calibration and failure
analysis; monitored rollouts with drift/shift detection;
and fairness auditing for relevant subgroups (patients,
breeds, cultivars, habitats). When using foundation or
generalist models, insist on domain-appropriate
adaptation (e.g., fine-tuning with domain controls,
prompt auditing) and thorough re-validation. [48,57-58]

For policymakers and sponsors, converging
guidance now exists to operationalize “trustworthy AI”
principles in health: the WHO’s governance note for
large (multi)modal models; NIST’s Al Risk
Management Framework (including the 2024 Generative
Al profile); and OECD’s 2024-2025 health Al/incident-
reporting initiatives. These frameworks, together with
device-specific regimes (FDA; EU Al Act obligations
for high-risk systems), can be made concrete in calls,
reviews, and procurement: require external validation,
monitoring plans, incident reporting, and model
cards/datasheets; reward reproducibility and cost-
effectiveness evidence; and align incentives with safe
deployment. [54—56,65—67]

6.4 Limitations

This scoping review synthesizes a very broad
landscape across subfields and modalities. Inevitably,
heterogeneity in indexing (e.g., domain-specific
repositories), English-only filters, and differing keyword
conventions may under-capture niches (e.g., aquaculture
diagnostics; non-English environmental monitoring).
Bibliometrics reflect citation and database coverage
biases; rapidly evolving preprints complicate temporal
comparisons. Finally, while we mapped
governance/regulatory context, device counts and legal
milestones evolve; we anchor claims in official sources
but caution that national adoption and post-market
performance are moving targets. [50,66]

6.5 Future directions

Benchmarks &  evaluation. Community
benchmarks that prioritize external and federated testing
can close the generalization gap; initiatives like MedPerf
show how to evaluate models on diverse, privacy-
preserving cohorts. The next wave should extend this
pattern to veterinary, plant, environmental and microbial
settings, with realistic class imbalance and shift
scenarios, and with mandated calibration/fairness
reporting. [68]
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Multimodal & foundation models. Pursue
domain-aware adaptation (lightweight tuning, retrieval-
augmented pipelines) and rigorous cross-site validation
before deployment. Build shared, licensed, well-
documented corpora spanning images, -omics, spectra,
eDNA and text, with datasheets and leakage checks. [47—
49,59]

Prospective validation & economics. Move
from retrospective AUCs to prospective studies, stepped-
wedge or RCT designs where feasible, and routine
reporting of clinical utility (decision curves), workflow
impact, and cost-effectiveness in target settings
(including low-resource). [52—53,64]

Governance & monitoring. Operationalize
NIST/OECD/WHO guidance as funder and journal
requirements, harmonized with FDA/EU expectations:
pre-registration or structured analysis plans; model cards
with intended use, data lineage, subgroup performance;
real-time MLOps with incident reporting; and
environmental/biological sampling standards (MIEM)
for non-clinical domains. [54-56,59,65—67]

7. CONCLUSION

This scoping review maps a decade of Al-
enabled diagnostics across the life sciences and shows a
field that is simultaneously maturing and uneven. Output
has scaled rapidly since 2015, but activity remains
concentrated in human medical imaging, with
comparatively modest footprints in veterinary, plant,
environmental, and microbial applications. Methods are
shifting from task-specific pipelines toward multimodal
and foundation-model approaches, yet the translational
evidence still trails the technical promise: external
validity is inconsistently demonstrated, calibration is
under-reported, and reproducibility and openness are not
the norm. Bibliometric patterns mirror this dynamic—
global participation with clear hubs—and thematic
analysis points to consolidation around multimodal
fusion and generalizable architectures.

Taken together, our results answer the core
questions. For RQI1, trends reveal steady growth, a
dominance of imaging and classification tasks, and early
(but increasing) adoption of multimodal/foundation
models; the geography is led by a few countries and
institutions, and metrics are still reported primarily as
AUROC with limited prevalence-aware summaries. For
RQ2, only a minority of studies provide external
validation or share code/data under explicit licenses;
preregistration remains rare. For RQ3, fairness auditing,
probability calibration, and regulatory readiness are the
most consistent cross-domain gaps, and they matter
equally for clinical trials, farm and field phenotyping,
biodiversity monitoring, and public-health
microbiology. For RQ4, the bibliometric structure
highlights a small set of venues and author clusters
driving influence, with emerging -clusters linking

explainability, multimodality, and environmental
applications.

The practical message is clear. Credible
diagnostic Al—whether for a radiology service, a
veterinary clinic, crop disease surveillance, or eDNA
biodiversity monitoring—demands the same
foundations: leakage-resistant design and transparent
datasheets; site- or season-aware splits; at least one
independent evaluation that reflects real deployment;
prevalence-aware metrics and operating points;
calibration and decision-utility reporting; robustness
checks against domain shift; and subgroup/fairness
audits tied to the intended population. Prospective or
“silent-mode” studies, together with fit-for-purpose
MLOps (drift monitoring, change control, incident
reporting), convert promising models into dependable
tools. Funders, journals, and regulators can accelerate
this shift by requiring external validation, open artefacts,
and model cards, and by incentivizing shared, domain-
spanning benchmarks (including federated evaluations)
that test generalization without moving sensitive data.

This review has limitations inherent to scoping
syntheses: English-language focus, database coverage
differences across subfields, rapidly evolving preprints,
and heterogeneity in reporting that complicates like-for-
like comparisons. Even so, the convergent patterns are
robust: performance drops on external cohorts are
common; openness is variable; and governance
expectations are rising. The most productive next steps
are concrete and actionable: establish cross-domain
benchmark suites with mandated calibration/fairness
reporting; build licensed, well-documented corpora for
multimodal and foundation-model adaptation; prioritize
prospective studies and cost-effectiveness analyses in
target workflows; and align research programs with
emerging regulatory frameworks from the outset. If the
community adopts these practices, the next decade
should deliver not only higher accuracy, but also reliable,
equitable, and auditable diagnostic systems that work
across clinics, farms, rivers, and labs alike.
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