Haya: The Saudi Journal of Life Sciences

Abbreviated Key Title: Haya Saudi J Life Sci ISSN 2415-623X (Print) | ISSN 2415-6221 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com

Original Research Article

Entomofaunal Inventory of Shakambhari Hills of Sikar Region, Rajasthan

Renu Kumari¹, Kanan Saxena^{1*}

¹Department of Zoology, Government Meera Girls College, Udaipur

DOI: https://doi.org/10.36348/sjls.2025.v10i08.004 | **Received:** 07.07.2025 | **Accepted:** 04.09.2025 | **Published:** 11.09.2025

*Corresponding author: Kanan Saxena

Department of Zoology, Government Meera Girls College, Udaipur

Abstract

The Shakambhari Hills in the Sikar region of Rajasthan host a rich and diverse entomofauna, yet have remained largely unexplored in terms of systematic entomological studies. This study presents a comprehensive inventory of insect species recorded from three distinct locations Kalakhet, Sakarai, and Bhagova by conducting random field surveys between 2021 and 2024. A total of 8,631 individuals belonging to 148 genera across 10 orders and 61 families were identified. Coleoptera was the most diverse and abundant order, followed by Lepidoptera and Hymenoptera. Presence of large number of insects from this region clearly indicates this region to comprise of tremendous diversity of insects and quite rich in flora which serve as host plants. These findings highlight the ecological significance of the Shakambhari Hills and underscore the need for conservation and further ecological research.

Keywords: Insects, diversity, abundance, hills, variations.

Copyright © 2025 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original author and source are credited.

Introduction

The Shakambhari Hills, located in the semi-arid region of Sikar, Rajasthan, are part of the Aravalli range and are known for their unique topography and vegetation. The availability of diverse life forms in an environment is influenced by the presence of flora and fauna and vice versa. Many different types of environments are habitats for insects (Sharma et al., 2021). According to Harper and Hawksworth (1994), insects make up a sizable amount of terrestrial species richness and biomass and are essential to the health of ecosystems. The insect ecology is being disrupted by human disruption of the agro-environment and fluctuations in the global climate (Swami & Lekha, 2020). The severity of environmental fluctuations is exacerbated by pollution, urbanization, and habitat erosion. Insects not only contribute to essential processes like pollination, decomposition, and nutrient cycling but also serve as bioindicators of ecosystem health (M. Ahmad & Dar, 2020). Despite their ecological importance, systematic surveys of insect biodiversity in this area have been limited. Insects, being integral to ecological processes such as pollination, decomposition, web dynamics. require thorough documentation, especially in understudied habitats. This study aims to bridge this gap by conducting a

quantitative and qualitative inventory of insect species across three selected sites within the Shakambhari Hills.

MATERIALS AND METHODS

Study Areas

The study was conducted at Shakambhari Hills in Sikar district, situated in the northeastern region of the state of Rajasthan between 27.640° E and 75.390° N. Sampling was conducted in three locations within the Shakambhari Hills:

- Kalakhet
- Sakrai
- Bhagowa

These areas were selected based on differences in vegetation type, human activity, and elevation to provide a representative overview of regional insect diversity. Survey was conducted 3 days of week from 2021 to 2024. Sites in each area were chosen using a stratified random sampling technique based on factors such as size, longitude, vegetation, etc.

Sampling and Identification

Field sampling was carried out using a combination of sweep nets, light traps, pitfall traps, and hand collection. Insects were photographed on spot. Specimens were preserved, mounted, and identified

using standard entomological keys and verified through available literature and expert consultation.

Statistical Analysis:

In ecological communities, species diversity, abundance, and spatial and temporal dispersion are crucial. Shannon-Wiener diversity index, Simpson index of dominance, Pielou's evenness index and Margalef's diversity index were used for data analysis.

In MS Excel, collected data was analyzed using Past 4.03 software.

RESULTS

The present study has recorded 148 species of insects belonging to 61 families and 10 orders (Table 4.1). Coleoptera is most abundant order with 3373 Lepidoptera individuals followed by Hymenoptera (883), Orthoptera (431), Diptera (328), Odonata (211), Hemiptera (136), Mantodea (98), Systellommatophora (20) and Thysanoptera (15). Species diversity and density of insects indicate a good diversity of plants in an area. Climate change, forest degradation, habitat loss, unavailability of hosts and nectar plant species are among major reasons for a decline in insect population. This leads to loss of plants species that depend on the insects for pollination.

Among the three areas, maximum species were observed at Kalakhet (3708) followed by Bhagova (2937) and Sakrai (1986). These variations may correspond to differences in vegetation cover, microclimatic conditions and human interference.

Taxonomic Composition

The most dominant orders in terms of diversity and abundance were:

Coleoptera: 54 species, 3,373 individuals
Lepidoptera: 55 species, 3136 individuals
Hymenoptera: 16 species, 883 individuals

Notable species with the highest recorded abundance include:

• Spilarctia lutea (Arctiidae): 163 individuals

Sitophilus oryzae (Curculionidae): 140 individuals

Catharsius sagax (Scarabaeidae): 133 individuals

• Tathorhynchus exsiccate (Erebidae): 130 individuals

Dineutus unidentatus (Gyrinidae): 127 individuals

Melanoplus bivittatus (Acrididae): 127 individuals

Table 1: Insect composition in three study areas of Shakambhari hills

S. No.	Order	Family	Scientific Name	Kalakhet	Sakrai	Bhagowa	Total no. of individuals
1	Coleoptera	Anobiidae	Lasioderma serricorne	42	20	32	94
2		Bruchidae	Callosobruchus chinensis	20	15	10	45
3		Carabidae	Carabus orientalis	62	15	22	99
4			Anthia sexmaculata	58	25	43	126
5		Cerambycidae	Metopides nivosus	35	25	30	90
6			Derobrachus geminatus	20	10	15	45
7		Chrysomelidae	Aspidimorpha miliaris	66	10	50	126
8			Calligrapha bicolorata	10	4	7	21
9			Coptocephala gebleri	14	5	11	30
10		Coccinellidae	Cheilomenes sexmaculata	28	21	18	67
11			Coccinella septempunctata	13	0	19	32
12		Curculionidae	Sitophilus oryzae	57	39	44	140
13		Dermestidae	Trogoderma granarium	27	22	18	67
14		Dysticidae	Cybister tripunctatus var-asiaticus	38	22	30	90
15		Elateridae	Lanelater sps.	15	13	14	42
16		Gyrinidae	Dineutus unidentatus	58	30	39	127
17		Hydrophilidae	Hydrous indicus	22	10	27	59
18			Hydrous olivaceous	23	13	25	61
19			Hydrophilus ovatus	18	6	23	47
20			Hydrophilus triangularis	40	20	40	100
21		Meloidae/Cantha	Epicauta orchea	30	28	30	88
22		ridae	Mylabris pustulata	18	6	18	42
23			Cyaneolytta violacea	57	30	37	124
24		Melolonthidae	Holotrichia consanguinea	14	12	16	42

	1				1		
S. No.	Order	Family	Scientific Name	Kalakhet	Sakrai	Bhagowa	Total no. of individuals
25		Oedemeridae	Oxycopis thoracica	20	18	25	63
26	-	Scarabaeidae	Anomala vitis	20	14	13	47
27	-	Scarabacidae		20	9	5	16
28	-		Gymnopleurus cyaneus	32	10	21	63
	-		Gymnopleurus miliaris				
29			Gymnopleurus parvus	10	4	5	19
30			Heliocopris gigas	8	4	5	17
31	 -		Catharsius platypus	12	5	10	27
32	-		Catharsius sagax	61	30	42	133
33			Copris repertus	21	15	31	67
34			Copris numa	30	0	17	47
35			Copris furciceps	31	15	19	65
36			Copris andrewesi	25	15	8	48
37			Heteronychus arator	20	13	16	49
38			Onthophagus catta	22	10	12	44
39	1		Onthophagus gulo	5	5	20	30
40	-		Onthophagus oculatus	25	18	22	65
41			Onthophagus crassicolis	38	15	24	77
42	1		Onthophagus seniculus	42	18	14	74
43	-		Onitis siva	41	15	38	94
44	-		Onitis falcatus	53	0	42	95
	-		· ·				
45	-		Onitis brahma	10	5	12	27
46	-		Phylllophaga rubinosa	16	9	14	39
47	 -		Sisyphus longipes	12	4	9	25
48	-		Adoretus sp.	54	12	23	89
49		Silphidae	Silpha sp.	15	7	10	32
50		Silvanidae	Oryzaephilus surinamensis	28	15	15	58
51		Tenebrionidae	Tribolium castaneum	27	5	5	37
52			Pimelia inexpectata	17	8	14	39
53			Pimelia indica	14	1	10	25
54			Gonocephalum depressum	29	8	21	58
55	Diptera	Culicidae	Aedes albopictus	10	5	8	23
56	1 1	Drosophilidae	Drosophilla melangogaster	35	28	32	95
57		Muscidae	Musca domestica	30	26	32	88
58	=	Sarcophagidae	Sarcophaga sp.	25	22	35	82
59		Syrphidae	Syrphus spp.	9	16	15	40
60	Hemiptera	Dinidoridae	Coridius ianus	13	6	11	30
61	Пошрита	Pentatomidae	Chinavia hilaris	14	8	9	31
62	1	Pyrrhocoridae	Dysdercus cingulatus	13	10	11	34
63	-	Reduviidae		14	13	14	41
	II. man om ovit - vi-		Acanthaspis siva	47	22	33	
64	Hymenoptera	Apidae	Amegilla violacea				102
65	-		Apis cerana	23	8	19	50
66	-		Apis dorsata	20	13	0	33
67	-		Apis florae	37	23	25	85
68	_		Ceratina sexmaculata	38	18	33	89
69	_		Ceratina smaragdula	22	0	16	38
70	_		Trigona laeviceps	23	12	15	50
71	_		Xylocopa fenestrate	34	10	23	67
72			Xylocopa latipes	27	0	22	49
73		Halictidae	Halictus spp.	20	10	18	48
74			Nomia latreille	12	5	17	34
75	1	Megachilidae	Coelioxys capitatus	27	15	7	49
76	1	<u> </u>	Megachile disjuncta	24	10	14	48
<u> </u>	1	L				<u> : </u>	

S. No.	Order	Family	Scientific Name	Kalakhet	Sakrai	Bhagowa	Total no. of individuals
77		Scoliidae	Campsomeriella annulata	12	8	32	52
78			Scolid binotata	22	8	16	46
79		Vespidae	Vespa orientalis	21	12	10	43
80	Lepidoptera	Acrolophidae	Acrolophus heppneri	40	14	24	78
81	Lepidopieia	Arctiidae	Spilarctia lutea	58	50	55	163
82		Bombycidae	Ocinara bifurcula,	55	5	50	110
83		Bostrychidae	Rhizopertha dominica	2	19	20	41
84		Crambidae	Maruca vitrata	33	0	23	56
85		Cramorade	Noorda blitealis	43	16	35	94
86			Omiodes indicata	29	21	44	94
87		Erebidae	Achaea janata	0	10	4	14
88		Eleoidae	Amata cyssea	20	10	29	59
89			Cerynea trogobasis	37	21	24	82
90			Eudocima maternal	30	10	14	54
91			Euproctis chrysorrhoea	19	13	16	48
92			Euproctis fraterna	45	20	14	79
93			Lymantria dispar	14	8	10	32
94			Olepa ricini	11	5	8	24
95				34	19	22	75
96			Orgyia postica Pandesma qvenavadi	22	18	12	52
97				49	15	23	87
98			Phytometra formsalis	12	3	13	
98			Anomis fulvida	15	9	15	28 39
			Trigonodes hyppasia	17			50
100			Utetheisa lotrix		10 33	23	
101			Achaea serva	33		31	97
102			Eudocima phalonia	22	20 35	35	77
103		C 1 1"1	Tathorhynchus exsiccate	50		45	130
104		Gelechiidae	Sitotroga cerealella	20	11	20	51
105		Geometridae	Idaea subsericeata	31	20	21	72
106			Macaria abydata	30	21	27	78
107			Orthonama obstipata	51	22	39	112
108			Pelagodes falsaria	34	20 10	29	83
109			Scopula inductata	16	7	14	40
110			Synchlora bistriaria	13 22	19	25	33 66
111		Limacodidae	Traminda mundissima	13	8	12	
113		Lycaenidae	Aergina hilaris Tarucus balkanicus	16	14	13	33 43
114		Noctuidae		16	8	14	38
115		Noctuldae	Aegocera venulia	32	13	19	64
116			Apamea remissa Chasmina candida	17	5	13	35
117				8	5	2	15
			Chrysodeixis acuta				
118			Chrysodeixis chalcites	29	14	18 17	61
119 120			Digama hearseyana	14	6	11	53 31
120			Helicoverpa armigera Maliattha signifera	23	19	17	59
121		Nymphalidae	Danaus chrysippus	38	17	35	90
123		тупірпапцає	Hypolimnas misippus	22	7	18	47
123		Papilionidae	Papilio demolius	10	0	6	16
124		Peridae	•	13	0	8	21
125		rendae	Catopsilia crocale	10	5	8	23
126		Pterophoridae	Pieris brassicae			12	
			Sphenarches anisodactylus	20	14		46
128		Pyralidae	Hypsopygia olinalis	30	15	17	62

S. No.	Order	Family	Scientific Name	Kalakhet	Sakrai	Bhagowa	Total no. of individuals
129		Sphingidae	Agrius convolvuli	8	5	15	28
130			Daphnis nerii	5	4	4	13
131			Hippotion celerio	28	10	8	46
132			Hippotion rosetta	5	0	6	11
133			Macroglossum stellatarum	30	18	9	57
134		Tineidae	Tineola bisselliella	14	16	16	46
135	Mantodea	Mantidae	Sphodromantis viridis	18	20	22	60
136		Eremiaphilidae	Tarachodes sps.	14	11	13	38
137	Odonata	Libellulidae	Bradinopyga geminata	18	20	17	55
138			Branchythemis contaminata	19	10	17	46
139			Pantala flavescens	12	9	13	34
140			Crocothemis servilia	14	18	10	42
141		Coenagrionidae	Ceriagrion coromendalinum	11	10	13	34
142	Orthoptera	Acrididae	Melanoplus bivittatus	45	40	42	127
143		Phalangopsidae	Meloimorpha japonica	20	15	13	48
144		Pyrgomorphidae	Atractomorpha crenulata	35	28	30	93
145			Poekilocerus pictus	46	40	43	129
146		Tettigoniidae	Macopoda elongata	13	11	10	34
147	Systellommatophora	Veronicellidae	Laevicaulis alte	8	7	5	20
148	Thysanoptera	Thripidae	Thrips hawaiiensis	7	1	7	15
	Total			3708	1986	2937	8631

Table 2: Insect diversity indices across three study areas of Shakambhari hills

	Kalakhet	Sakrai	Bhagowa
Taxa (S)	147	139	147
Individuals	3708	1986	2937
Dominance (D)	0.008978	0.009767	0.008966
Shannon (H)	4.836	4.768	4.838
Evenness (e^H/S)	0.8571	0.8466	0.8588
Margalef	17.77	18.17	18.28

Among all insect orders observed, Lepidoptera is most diverse followed by Coleoptera, Hymenoptera, Orthoptera, Diptera, Odonata, Hemiptera and Mantodea respectively. Systellommatophora and Thysanoptera are low in diversity. Coleoptera is most diverse in Bhagowa area and Mantodea is least diverse in Sakrai area.

DISCUSSION

Our results reveal pronounced spatial variation across the insect diversity Shakambhari Hills. Kalakhet emerged as the most diverse site, with the highest abundance (3708 individuals), lowest dominance (D = 0.008978), and highest Shannon diversity index (H' = 4.836), indicating a well-balanced species-rich community. Bhagowa exhibited similarly high diversity (Shannon H' = 4.838), despite marginally elevated dominance (D = 0.008966). In contrast, Sakrai had the lowest abundance (1,986), highest dominance (D = 0.009767), and lowest Shannon index (H' = 4.768), though its Margalef index (18.17) was at par with Bhagowa, suggesting rich species richness but reduced evenness. The area-specific data provide valuable insights into habitat preferences and microhabitat variation. Kalakhet, with the highest diversity, may offer more stable microclimates or less disturbance. These patterns reflect the broader ecological principle that habitat quality and connectivity are crucial drivers of insect diversity.

The Aravalli Hill Range, as a semi-arid zone with diverse vegetation types and microhabitats, supports a wide array of insect species, including Lepidoptera, Hymenoptera, Diptera, and Orthoptera (D. Ahmad *et al.*, 2021; Jangid *et al.*, 2017).

The dominance of Coleopterans in our study aligns with global trends in insect diversity and their adaptability to diverse habitats. The high representation of Lepidoptera and Hymenoptera further points to the ecological richness of the area. The notable presence of both agricultural pests (e.g., *Helicoverpa armigera*) and pollinators (e.g., *Apis* spp., *Amegilla violacea*)

underscores the ecological and economic significance of the region's insect fauna.

Habitat heterogeneity and area play critical roles in promoting insect community richness and abundance. In shrub ecotones, true bug diversity was strongly linked with greater habitat area, floral richness, and structural quality elements likely more prevalent in Kalakhet and Bhagowa. Beyond local features, landscape composition influences species richness at both habitat and landscape scales. In fragmented settings like Sakrai, such turnover may occur, but local diversity remains compromised due to dominance by a few resilient taxa.

particularly Lepidopterans, moths and butterflies, have been widely studied in different hill ranges of India due to their ecological importance and sensitivity to environmental changes. Ahmad et al. (2021) recorded significant moth diversity in the Aravalli Hill Range, highlighting species richness across altitudinal gradients. Similarly, Bhagat (2020) and Sharma (2011) documented notable butterfly species diversity in Mukundara Hills and Aravalli Range respectively, emphasizing the influence of vegetation type and habitat structure on their distribution. Comparative studies from other regions, such as the Western Ghats (Mathew et al., 2018) and Mandi Hills (Kaundil & Mattu, 2017), further support these findings.

The diversity of other insect orders such as Hymenoptera and Diptera in Rajasthan reflects varied ecological roles and adaptations. Bishnoi and Dang (2019) along with Hooda and Jain (2020) reported a rich diversity of bees and wasps in Kota, which are essential pollinators in agroecosystems. Similarly, studies on mosquito diversity in Jodhpur (Sharma *et al.*, 2021) and aquatic insects in Lake Pichhola, Udaipur (Naz *et al.*, 2021) demonstrate how aquatic and semi-aquatic habitats also serve as vital refugia for Dipteran species, influencing public health and biodiversity alike.

Insect diversity in Rajasthan's agroecosystems also reveals interesting patterns influenced by seasonal cropping systems and habitat management. Swami and Lekha (2020) studied insect faunal diversity in Rabi agroecosystems using light traps and found a high turnover rate of insect fauna, emphasizing the need for regular monitoring. Similarly, Dhakad *et al.*, (2014) reported diverse Orthopteran fauna in sugarcane fields of Udaipur, with species composition influenced by cultivation practices and climate.

The influence of habitat fragmentation on insect diversity and distribution is another pressing issue. According to Haddad *et al.*, (2015), fragmentation leads to reduced species richness, disrupted ecological networks, and long-term declines in population viability. This aligns with our observations Kalakhet and Bhagowa presumably benefit from better habitat integrity, whereas

Sakrai may be more fragmented or degraded. This is particularly relevant in regions like the Aravalli Hills, where increasing urbanization and deforestation pose a significant threat to insect habitats (Forest Survey of India, 2006; Tak & Srivastava, 2015). Studies suggest that species richness and ecological indices such as Shannon-Wiener and Simpson's Index can be effective tools for assessing the impact of such fragmentation (Harper & Hawksworth, 1994; Pielou, 1966; Shannon & Wiener, 1949).

Meta-analyses indicate that herbivore insect abundance and species richness decline significantly with habitat fragmentation, especially in smaller, isolated patches, and specialist species are the most vulnerable. In the context of our findings, Sakrai's elevated dominance and lower evenness may indicate the loss of specialist taxa, skewing community composition toward generalist or dominant species.

CONCLUSION

The Shakambhari Hills reveal a rich entomological diversity and display clear gradients in insect diversity among different areas with Kalakhet and Bhagowa supporting richer, more evenly distributed communities compared to Sakrai. These patterns are consistent with broader ecological principles linking habitat area, quality, connectivity, and fragmentation to insect diversity. Protecting and restoring habitat integrity, mitigating fragmentation, and promoting structural complexity are essential strategies for conserving insect biodiversity in this region.

Acknowledgement

We are thankful to CSIR for providing the financial support (through CSIR- JRF scheme-Ref. No. 18/12/2016(ii) EU-V Sr. No. 1121631094 dated 01/07/2017) during the research work. We are also thankful to Mr. Mahesh Yadav and Mr. Damodar Saini for accompanying us during the field visits.

REFERENCES

- Ahmad, D., Jamal, K., Alhazmi, A., El-Sharnouby, M., Salah, M., & Sayed, S. (2021). Moth diversity, species composition, and distributional pattern in Aravalli Hill Range of Rajasthan, India. Saudi Journal of Biological Sciences, 28(9), 4884–4890.
- Ahmad, M., & Dar, N. (2020). Insects: Their importance and role in ecosystem. *Insects*, 15(1), 15–16.
- Bhagat, R. (2020). Checklist of butterflies (Insecta: Lepidoptera) from Mukundara Hills Tiger Reserve, Rajasthan. *BIONOTES*, 22(2), 50–54.
- Bishnoi, S., & Dang, K. (2019). Diversity of some hymenopteran insects in Kota, Rajasthan, India. *Journal of Entomology and Zoology Studies*, 7(2), 31–33.

- Dhakad, D., Nagar, R., Mal, R., Rathore, P., & Swaminathan, R. (2014). Diversity of Orthopteran Fauna In Sugarcane At Udaipur. *The Bioscan*, 207– 210.
- Forest Survey of India. (2006). Forest cover and insect habitats of Aravalli Hills. FSI Report.
- Haddad, N., Brudvig, L., Clobert, J., Davies, K., Gonzalez, A., Holt, R., Lovejoy, T., Sexton, J., Austin, M., Collins, C., & others. (2015). Habitat fragmentation and its lasting impact on Earth's ecosystems. *Science Advances*, 1(2), e1500052. https://doi.org/10.1126/sciadv.1500052
- Harper, J., & Hawksworth, D. (1994). Biodiversity: Measurement and estimation. *Proceedings of the Royal Society of London*, 345, 5–12.
- Jangid, A., Yadav, D., Meena, D., & Sharma, V. (2017). An Annotated Checklist of Lepidopterean fauna of foothills of Central Aravalli ranges, Rajasthan. *International Journal on Life Science and Bioengineering*, 4(2), 1–8.
- Kaundil, P., & Mattu, V. (2017). A preliminary study on butterfly fauna (Order: Lepidoptera) from Mandi hills of Himachal Pradesh. *Journal of Entomology and Zoology Studies*, 5(3), 851–854.
- Mathew, P., Anand, S., Sivasankaran, K., & Ignacimuthu, S. (2018). The moths (Lepidoptera: Heterocera) of Vagamon hills (Western Ghats), Idukki district, Kerala, India. *International Journal of Entomology Research*, 3(2), 114–120.

- Naz, F., Nalwaya, S., Yadav, R., & Saxena, K.
 (2021). Diversity of Aquatic Insects in Lake Pichhola of Udaipur, Rajasthan, India.
- Pielou, E. (1966). The measurement of diversity in different types of biological collections. *Journal of Theoretical Biology*, *13*, 131–144.
- Shannon, C., & Wiener, W. (1949). *The mathematical theory of communication*. University of Illinois Press.
- Sharma, G. (2011). Studies on Lepidopterous Insects Associated with Vegetables in Aravali Range, Rajasthan, India. *An International Journal*, 3(1), 21–26.
- Sharma, G., Chittora, S., & Ojha, R. (2021). Study on mosquito (Diptera: Culicidae) diversity in Jodhpur district of the Rajasthan state. *International Journal of Mosquito Research*, 8, 16–19.
- Swami, H., & Lekha, L. (2020). Insect faunal diversity in Rabi agro ecosystems of Southern Rajasthan using light traps. *Indian Journal of Plant* Protection, 44(4).
- Tak, A., & Srivastava, D. (2015). Diversity and Population Turnover of Insect Fauna in Pushkar Lake in the Aravalli Region of Rajasthan, India. *RJRS*, 4, 308–312.