

Citation: Tran Dang Hung (2024). Community Detection in Network: Algorithmic Approaches with Python Programming.

Saudi J Eng Technol, 9(4): 192-204.

 192

Saudi Journal of Engineering and Technology
Abbreviated Key Title: Saudi J Eng Technol

ISSN 2415-6272 (Print) | ISSN 2415-6264 (Online)

Scholars Middle East Publishers, Dubai, United Arab Emirates

Journal homepage: https://saudijournals.com

 Review Article

Community Detection in Network: Algorithmic Approaches with Python

Programming
Tran Dang Hung1*

1Faculty of Applied Science, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu

District, Ho Chi Minh City, Vietnam

DOI: 10.36348/sjet.2024.v09i04.001 | Received: 23.02.2024 | Accepted: 05.04.2024 | Published: 08.04.2024

*Corresponding author: Tran Dang Hung

Faculty of Applied Science, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu

District, Ho Chi Minh City, Vietnam

Abstract

Community detection is the identification of different communities or groups that exist within a network. This is useful in

social network analysis (SNA) or what is great is performing whole network analysis (WNA), where humans interact with

others as part of their various communities, but these approaches are not limited to the study of humans. These methods

are to investigate any type of node that interacts closely with other nodes, whether those nodes are animals, hashtags,

websites, or any other type of node in the network. In this work, we zoom in on communities that exist in a network.

Community detection is a clear, concise, and appropriate name for what we are doing. Communities in the network would

be worth exploring and understanding for further purposes. There are several methods and different approaches to detect

community, but in this paper, I use two efficient methods to detect whole network which are named Louvain Method (LM)

and Girvan-Newman Method (GNM). With LM, we can build a fast algorithm that is effective at community detection in

massive networks and optimize the algorithm for better results. Using the GNM, a better approach that can identify the

least number of edges that could be cut would result in a split network. We could do this by making an algorithm looking

for the edges that the greatest number of shortest paths pass through.

Keywords: Community Detection, Social Network Analysis, Social Network, Network Analysis, Whole Network

Analysis, Network, Networkx.

Copyright © 2024 The Author(s): This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International

License (CC BY-NC 4.0) which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use provided the original

author and source are credited.

1. INTRODUCTION
It is useful in SNA, as humans interact with

others as part of our various communities when we detect

community, identifying the various communities or

groups that exist in a network. We can also use these

approaches to investigate any kinds of nodes that interact

closely with other nodes, whether those nodes are

animals, hashtags, websites, or any kind of nodes in a

network. What communities would you be interested in

exploring and understanding, and why? There are many

good use cases for this. I can use it to understand the

sentiment communities share about my product. I can use

this to understand a threat landscape. I can use this to

understand how ideas move and transform between

different groups of people, etc. Be creative here. There

are probably more uses for this than I can imagine.

In this paper, I will explore this in the context

of human life, but it should not feel limited to only using

this for social network analysis. This is very useful in

SNA, but it is also useful in analyzing most network data,

not just social network data. For instance, this can be

useful in both cybersecurity, malware analysis and

computational humanities, or in understanding how ideas

move between groups and evolve.

Doing community detection, we have at least

three different approaches, with the most frequently

researched including the following: Node connectivity,

Node closeness, Network splitting. Node connectivity

has to do with whether nodes are part of the same

connected component or not. If two nodes are not part of

the same connected component, then they are part of a

completely different social group, not part of the same

community. Node closeness has to do with the distance

between two nodes, even if they are part of the same

https://saudijournals.com/sjeat

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 193

connected component. For instance, two people might

work together in the same large organization, but if they

are more than two handshakes away from one another,

they may not be part of the same community. It would

take several rounds of introductions for them to ever

meet each other. Consider how many people you would

have to go through to be introduced to your favorite

celebrity. How many people would you need to be

introduced to? Network splitting has to do with literally

cutting a network into pieces by either removing nodes

or edges. The preferred approach that I will explain is

cuts on edges, but I have done something similar by

removing nodes, shattering networks into pieces by

removing central nodes.

That is at the end of discovery for community

detection? I do not believe that. I hope that reading

through this paper will give you some ideas for new

approaches to identifying the various communities that

exist in networks.

2. Getting Started with Community Detection

For getting stared, we will be using several

different Python libraries: Networkx, pandas, scikit-

network. These libraries should be installed. We also

need a network to use. Let's use NetworkX's Les

Miserables graph since it held several separate

communities:

First, we load the network

Import networkx as nx

Import pandas as pd

G = nx.les_miserables_graph()

We do not need edge weights for this simple

demonstration. So, I am going to drop it and rebuild the

graph. Then we converted the Les Miserables graph into

a pandas edge list, and we kept only the 'source' and

'target' fields, effectively dropping the weight field. Let's

see how many nodes and edges exist in the network:

df = nx. to_pandas_edgelist (G) [['source',

'target']

dropping 'weight'

G = nx. from_pandas_edgelist (df)

Print ('Number of nodes', len(G.nodes))

Print ('Number of edges', len(G.edges))

Print ('Average degree', sum (dict

(G.degree).values ())/len(G.nodes)

We have output:

Number of nodes 77

Number of edges 254

Average degree 6.597402597402597

Second, we need to build draw_graph function

to draw graph instead of using draw function in the

matplotlib.pyplot def draw_graph(G,

show_names=False, node_size=1, font_size=10,

edge_width=0.5):

Import numpy as np

From IPython.display import SVG

From sknetwork.visualization import

svg_graph

From sknetwork.data import Bunch

From sknetwork.ranking import PageRank

Adjacency = nx. to_scipy_sparse_matrix(G,

nodelist = None, dtype = None, weight =

‘weight’, format = ‘csr’)

Names = np. Array (list (G.nodes ()

Graph = Bunch ()

Graph. Adjacency = adjacency

Graph. Names = np. Array (names)

pagerank = PageRank()

Scores = pagerank. fit_transform (adjacency)

If show_names:

Image = svg_graph (graph.adjacency, font_size

= font_size, node_size-node_size, names =

graph.names, width = 700, height = 500, scores

= scores, edge_width = edge_width)

Else:

Image = svg_graph (graph.adjacency,

node_size = node_size, width = 700, height =

500, scores = scores, edge_width = edge_width)

Return SVG (image)

If we want to visualize the network in its entirety, by

calling the draw_graph() like this:

draw_graph(G, show_names = True, font_size

= 12, node_size = 4,

edge_width = 1)

In the original Les Miserables graph, we should

be able to see that there are several clusters of nodes that

are very close to each other (communities), and there are

a few critically important nodes. If those critically

important nodes were removed, the network would

shatter to pieces. We also have that there is no isolated

node (nodes without edges), there are several nodes with

a single edge (Figure 1).

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 194

Figure 1: Les Miserables graph (original)

The last, we zoom in this graph a little, using

k_core, only show nodes that have two or more edges,

and not display labels so that we can get a sense of the

overall shape of the network:

Draw_graph(nx.k_core(G, 2), font_size = 12,

show_names = False, node_size = 4, edge_width = 0.5)

We will get the following visualization:

Figure 2: Les Miserables graph (zoom in)

The communitie graph should be a little clearer

now (Figure 2). How many communities do there are?

There are four, but there are smaller groups scattered

around, and there is also likely a community in the center

of the network. We begin our attempts at community

detection.

3. Exploring Connected Components for Detecting

Communities (Connected Components Method)

For understanding the various communities and

structures that exist in a network is analyzing the

connected components. As we can see, connected

components are structures in networks where all nodes

have a connection to another node in the same

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 195

component. Connected components can be useful for

finding smaller connected components. Those can be

thought of as communities as they are detached from the

primary component and overall network, but the largest

connected component is not typically a single

community. It is usually made up of several

communities, and it can usually be split into individual

communities.

In the Les Miserables network, there is only one

connected component. There are no islands or isolates.

There is just one single component. It takes away a bit of

the usefulness of inspecting connected components for

this graph. There is a way around that, if we remove a

few critically important nodes from a network, that

network tends to shatter into pieces by two following

steps:

Step 1: Remove five very important characters

(['Valjean', 'Marius', 'Fantine', 'Cosette', 'Bamatabois']

from the network, and visualize the network again:

G_сору = G.copy()

G_copy.remove_nodes_from(['Valjean',

'Marius', 'Fantine', 'Cosette', 'Bamatabois'])

draw_graph(G_copy, font_size = 12,

show_names = True, node_size = 4,

edge_width = 1)

We have the following visualization:

Figure 3: Shattered Les Miserables network

This network is much closer to how many real-

world networks look. There's still one primary connected

component (continent), there are three smaller connected

components (islands), and there are six isolated nodes.

There is no threshold for deciding that an island is a

continent. It is just that most networks contain one super-

component (continent), lots and lots of isolated nodes,

and several connected components (islands). This helps

to do more analyst.

What I just did could be used as a step-in

community detection. Removing a few key nodes can

break a network apart, pulling out the smaller

communities that exist. Those critically important nodes

held one or more communities together as part of the

larger structure. Removing the important nodes allowed

the communities to drift apart. It is not usually ideal.

However, other actual approaches to community

detection work similarly, by removing edges rather than

nodes.

Step 2: Remove isolated nodes and inspect each one.

After shattering the network there are 10

connected components left, but 6-isolates are not

connected to anything other than possibly themselves.

We remove them before looking into connected

components:

G_copy = nx.k_core(G_copy, 1) # Remove

isolated nodes

Community = components [0]

G_community =

G_copy.subgraph(community)

draw_graph(G_community, show names =

True, node_size = 5)

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 196

Let's look at the visualization:

Figure 4: Component 0 subgraph of the shattered Les Miserables network

That is very interesting. The first connected

component is almost a star network, with all nodes

connecting to one central character, Myriel. However, if

you look at the top left, you should see that two

characters also share a link. That relationship could be

worth investigating.

Let's look at the next component.

Community = components [1]

G_community = G_copy. subgraph

(community)

draw_graph (G_community, show_names =

True, node_size = 4)

This gives us the following output:

Figure 5; Component 1 subgraph of the shattered Les Miserables network

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 197

This is the primary component. It's the largest

connected component in the shattered network.

However, connected components are not ideal for

identifying communities. Look slightly left of the center

in the network - we should see two clusters of nodes

['Gavroche', 'Javert'], two separate communities. There is

also at least one other community on the right. If two

edges or nodes were removed, the community on the

right would split off from the network.

Let's continue with the third component:

Community = components [2]

G_community =

G_copy.subgraph(community)

draw_graph(G_community, show_names =

True, node_size = 4)

We have following output:

Figure 6: Component 2 subgraph of the shattered Les Miserables network

This is a strongly connected component. Each

node has a connection to the other nodes in this network.

If one node were removed, this network would remain

intact. From a network perspective, each node is as

important or central as each other node.

Let's move to the final component:

Community = components[3]

G_community =

G_copy.subgraph(community)

draw_graph(G_community, show_names =

True, node_size = 4)

We have the following output. It is a densely

connected network. Each node is equally important or

central. If one node were to be removed, this network

would remain intact.

Figure 7: Component 3 subgraph of the shattered Les Miserables network

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 198

We were able to find three communities by

looking at the connected components, but connected

components did not draw out the communities that exist

in the larger primary component. If we wanted to draw

those out, we would have to remove other important

nodes and then repeat our analysis. Removing away

nodes is one way to lose information, so I do not

recommend that approach, but it can be useful for quick

ad hoc analysis.

Communities can be found while investigating

connected components, I also do not consider

investigating connected components to be community

detection. I consider this one of the first steps that should

be taken during any network analysis, and the insights

gained are valuable, but it's not sensitive enough for

community detection.

If your network contained no super-cluster of a

connected component, then connected components

would be pretty adequate for community detection.

However, you would have to treat the super-cluster as

one community, and the cluster contains many

communities. The connected component approach

becomes less useful with larger networks.

So, we move on to more suitable methods. First,

dabbling in community detection by starting with the

Louvain method, and then picking up other approaches.

It's good to know that there are options.

4. Using the Louvain Method for Detecting

Communities

The Louvain method works through a series of

passes, where each pass contains two phases. The first

phase assigns different communities to each node in the

network. Initially, each node has a different community

assigned to it. Then, each neighbor is evaluated, and

nodes are assigned to communities. The first step

concludes when no more improvements can be made. In

the second phase, a new network is built, with nodes

being the communities discovered in the first step. Then,

the results of the first phase can be repeated. The two

steps are iterated until optimal communities are found.

Using the Louvain method, we have a fast algorithm that

is effective at community detection in massive networks,

and we can optimize the algorithm for better results.

The Louvain method has been included in more

recent versions of Networkx, so if you have the latest

version of Networkx, you will not need to use the

community Python library. Your version will be

different, if you use the older version, you need to use the

community library approach. First, we build code that

will help us draw Louvain partitions:

Import community as community_louvain

Import networkx as nx

G = nx.les_miserables_graph()

def draw_partition(G, partition):

Import matplotlib.cm as cm

Import matplotlib.pyplot as plt

draw the graph

plt.figure(3, figsize = (12,12))

pos = nx.spring_layout(G)

color the nodes according to their partition

cmap = cm.get_cmap('jet',

max(partition.values()) + 1)

nx.draw_networkx_nodes(G, pos,

partition.keys(), node_size = 40,

cmap = cmap, node_color = list

(partition.values()))

nx.draw_networkx_edges(G, pos, alpha = 0.5,

width = 0.3)

Return plt.show()

Starting to use the best partition function to

identify the optimal partition using the Louvain method.

During the testing, I found resolution = 1 to be ideal, but

with other networks, you should experiment with this

parameter:

Partition =

community_louvain.best_partition(G,

resolution=1)

draw_partition(G, partition)

This code has created a visualization:

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 199

Figure 8: Louvain method community detection of the Les Miserables network

The draw partition () function in step 1 will

color nodes by the communities that they belong to. The

important thing is that separate communities have been

detected, and each community of nodes is identified with

a different color. Each node belongs to a different

partition, and those partitions are the communities.

Second, we look at what is inside the partition variable:

Partition

{'Napoleon':1,

'Myriel':1,

'MlleBaptistine':1,

'MmeMagloire'1,

'CountessDeLo':1,

'Geborand':1,

…

'Grantaire':0,

'Childl':0,

'Child2':0,

'BaronessT':2,

'MlleVaubois':2,

'MotherPlutarch': 0}

To save space, I cut out some of the nodes and

partitions. Each node has an associated partition number,

and that's the community that it belongs to. I want to get

a list of nodes that belong to an individual community,

so I do:

[Node for node, community in partition. Items () if

community == 2]

The Louvain method is so exciting. For one

thing, it can scale to massive networks, allowing for

research into the largest networks, such as the internet.

Second, it's fast and practical. There is not a lot of point

to an algorithm that is so slow as to only be useful on tiny

networks. Louvain is practical with massive networks.

This algorithm is fast and efficient, and the results are

very good. This is an algorithm for community detection.

We have another option for community detection by

using Girvan-Newman method.

5. Using Girvan-Newman Method for Detecting

Communities

At previous, we noticed that the Les Miserables

network consisted of a single large, connected

component and that there were no isolates or smaller

"islands" of communities apart from the large, connected

component. To show how connected components could

be useful for identifying communities, we shattered the

network by removing a few key nodes. That approach is

not typically ideal. While there is information in both

nodes (people, places, things) and edges (relationships),

in my experience, it is typically preferable to throw away

edges than to throw away nodes.

A better approach than what we did previously

would be to identify the least number of edges that could

be cut that would result in a split network. We could do

this by looking for the edges that the greatest number of

shortest paths pass through - that is, the edges with the

highest edge_betweenness_centrality. That is precisely

what the Girvan-Newman algorithm does.

In a network, there are several nodes on two

different sides connected by a few edges. It almost looks

like a few rubber bands are holding the two groups

together. If you snip the rubber bands, the two

communities should fly apart, similar to how networks

shatter into pieces when key nodes are removed. This is

more surgically precise than removing nodes. There is

less loss of valuable information. Losing information on

certain relationships is a drawback.

Through a series of iterations, the Girvan-

Newman method identifies edges with the highest

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 200

edge_betweenness_centrality scores and removes them,

splitting a network into two pieces. Then, the process

begins again. If not repeated enough, communities are

too large. If repeated too many times, communities end

up being a single node. So, there will be some

experimentation when using this algorithm to find the

ideal number of cuts.

The downside of this algorithm is that it is not

fast. Calculating edge_betweenness_centrality is much

more computationally expensive than the computations

being done for the Louvain method. As a result, this

algorithm ceases to be useful very quickly, as it becomes

much too slow to be practical. However, if your network

is small enough, this is a very cool algorithm to explore

for community detection. It's also intuitive and easy to

explain to others.

I tried this out with the Les Miserables graph.

The graph is small enough that this method should be

able to split it into communities quickly:

First, we import the algorithm, and need to pass

the graph to the algorithm as a parameter. When we do

this, the algorithm will return the results of each iteration

of splits, which we can investigate by converting the

results into a list:

From networkx.algorithms.community import

girvan_ newman

Communities = girvan_newman(G)

Communities = list(communities)

Print ('Maximum number of iterations that the

algorithm consisted of a single node:',

len(communities))

Output: 76

Second, I could investigate the various levels of

splits and find the one that looks best for my needs. We

have 76 iterations of splits kept in a Python list. It could

be very early in the process, in the first 10 splits, or it

might be a bit later. This part requires some analysis,

further making this a bit of a hands-on algorithm.

For continuously, I assume that we found that

the tenth iteration of splits yielded the best results. Let's

set the tenth iteration results as our final group of

communities, and then visualize the communities as we

did with the Louvain method.

Communities = communities [9]

I will be keeping the tenth iteration results and

dropping everything else. If I did not want to throw away

the results, I could have used a different variable name.

To see what these communities look like so that we can

compare them against the other algorithms we discussed:

Community = communities [0]

G_community = G.subgraph (community)

draw_graph(G_community, show_names =

True, node_size = 5)

This code has created a visualization:

Figure 9: Girvan-Newman community detection of the Les Miserables network, community 0

This subgraph (community 0) is familiar the

subgraph that I shattered the network by nodes and then

visualized connected components. This algorithm split

the network using edges and managed to find the same

community.

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 201

We go forward with another communities:

Community = communities [1]

G_community = G.subgraph (community)

draw_graph(G_community, show_names =

True, node_size = 5)

We have the following output:

Figure 10: Girvan-Newman community detection of the Les Miserables network,

Community 1

It is not uncommon when community 1 has a densely

connected group, as well as some less connected nodes.

Let's see community 2:

Community = communities [2]

G_community = G.subgraph (community)

draw_graph(G_community, show_names =

True, node_size = 5)

We have the following output:

Figure 11: Girvan-Newman community detection of the Les Miserables network,

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 202

Community 2

Let's move to the community 3:

Community = communities [3]

G_community = G.subgraph (community)

draw_graph(G_community, show_names =

True, node_size = 5)

We have the following output:

Figure 12: Girvan-Newman community detection of the Les Miserables network,

Community 3

Community 2, community 3 is similar to

community 1. They have a densely connected group of

nodes and some nodes with a single edge. This looks

great.

And the next one – the community 4:

Community = communities [4]

G_community = G.subgraph (community)

draw_graph(G_community, show_names =

True, node_size = 5)

We have the following network:

Figure 13: Girvan-Newman community detection of the Les Miserables network,

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 203

Community 4

While this may be less visually appealing to

look at, this impresses me more than the other network

visualizations. This is a less obvious community, found

only by cutting edges with the highest

edge_betweenness_centrality scores. There is a slightly

more connected group of nodes in the center, surrounded

by nodes with a single edge each on the outskirts.

The Girvan-Newman method can give really

good and clean results. The only downside is its speed.

Calculating edge_betweenness_centrality and

shortest_paths is time-consuming, so this method is

much slower than the others that we discussed, but it can

be very useful if your network is not too large.

All these algorithms that we have just explored

were ideas that people had on how to identify

communities in networks, either based on nearness to

other nodes or found by cutting edges. However, these

are not the only approaches. If we are continuing with an

approach before learning about the Girvan-Newman

algorithm that cuts nodes rather than edges. When I

studied about the Girvan-Newman approach, I found that

to be more ideal and gave up on my implementation. But

that got me thinking, what other approaches might there

be to better identify communities in networks? Let's try

to discover other ways of identifying communities later

more.

6. CONCLUSION
We have just studied several different

algorithmic approaches for community detection. First,

we use the connected components method, it can be

useful for identifying communities, but only if the

network consists of more than just one single primary

component. To use connected components to identify

communities, there need to be some smaller connected

components split off. It's very important to use connected

components at the beginning of your network analysis to

get an understanding of the overall structure of your

network, but it is less than ideal as a standalone tool for

identifying communities. Next, we used the Louvain

method. This algorithm is extremely fast and can be

useful in networks where there are hundreds of millions

of nodes and billions of edges. If your network is very

large, this is a useful first approach for community

detection. The algorithm is fast, and the results are clean.

There is also a parameter you can experiment with to get

optimal partitions. Finally, we used the Girvan-Newman

algorithm, which is an algorithm that finds communities

by performing several rounds of cuts on edges with the

highest edge_betweenness_centrality scores. The results

were very clean. The downside of this algorithm is that

it is very slow and does not scale well to large networks.

However, if your network is small, then this is a very

useful algorithm for community detection.

Community detection is one of the most

interesting areas of network analysis. It is one thing to

analyze networks as a whole or explore ego (connections

between nodes) networks but being able to identify and

extract communities is another skill that lies between

whole network analysis and ego-centric network

analysis.

Community detection techniques will be

helpful in supervised machine learning and unsupervised

machine learning research. These techniques would be

code-heavy, not math-heavy. There are tons of

community detection techniques out there that have an

emphasis on math but do not show actual implementation

very well, or at all. I hope these methods have effectively

bridged the gap, giving a new skill to coders, and

showing programmatic ways to take the network analysis

to new heights.

REFERENCES
• Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993).

Network Flows: Theory, Algorithms, and

Applications (Prentice–Hall, Upper Saddle River,

NJ).

• Arenas, A., Fern´andez, A., & G´omez, S. (2008). N.

J. of Phys. 10 053039.

• Broder, A., Kumar, R., Maghoul, F., Raghavan, P.,

Rajagopalan, S., Stata, R., ... & Wiener, J. (2000).

Graph structure in the web. Computer

networks, 33(1-6), 309-320.

• Clauset, A., Newman, M. E., & Moore, C. (2004).

Finding community structure in very large

networks. Physical review E, 70(6), 066111.

• Danon, L., D´ıaz-Guilera, A., Duch, J., & Arenas, A.

(2005). Community analysis in social networks J.

Stat. Mech. P09008.

• Fortunato, S., & Barth´elemy, M. (2007). Resolution

limit in community detection Proc. Natl. Acad. Sci.

USA 104, 36.

• Girvan, M., & Newman, M. E. J. (2002). Proc. Natl.

Acad. Sci. USA 99 7821.

• Hoerdt, M., & Magoni, D. (2003, October).

Completeness of the internet core topology collected

by a fast mapping software. In Proceedings of the

11th International Conference on Software,

Telecommunications and Computer Networks (pp.

257-261).

• Newman, M. E. (2001). The structure of scientific

collaboration networks. Proceedings of the national

academy of sciences, 98(2), 404-409.

• Newman, M. E. (2004). Detecting community

structure in networks. The European physical

journal B, 38, 321-330.

• Newman, M. E. (2004). Fast algorithm for detecting

community structure in networks. Physical review

E, 69(6), 066133.

• Newman, M. E. (2006). Modularity and community

structure in networks. Proceedings of the national

academy of sciences, 103(23), 8577-8582.

• Newman, M. E. J., & Girvan, M. (2004). Phys. Rev,

E 69 026113.

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates 204

• Newman, M. E. J., Barab´asi, A. L., & Watts, D. J.

(2006). The Structure and Dynamics of Networks

(Princeton University Press, Princeton).

• Palla, G., Der´enyi, I., Farkas, I., & Vicsek, T.

(2005). Uncovering the overlapping community

structure of complex networks in nature and society

Nature, 435-814.

• Pons, P., & Latapy, M. (2006). Computing

communities in large networks using random

walks. J. Graph Algorithms Appl., 10(2), 191-218.

• Ravasz, E., & Barabási, A. L. (2003). Hierarchical

organization in complex networks. Physical review

E, 67(2), 026112.

• Scott, J. (2000). Social Network Analysis: A

Handbook (Sage, London), 2nd Ed.

• Wasserman, S., & Faust, K. (1994). Social Network

Analysis (Cambridge Univ. Press, Cambridge,

U.K.).

