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Abstract  
 

Community detection is the identification of different communities or groups that exist within a network. This is useful in 

social network analysis (SNA) or what is great is performing whole network analysis (WNA), where humans interact with 

others as part of their various communities, but these approaches are not limited to the study of humans. These methods 

are to investigate any type of node that interacts closely with other nodes, whether those nodes are animals, hashtags, 

websites, or any other type of node in the network. In this work, we zoom in on communities that exist in a network. 

Community detection is a clear, concise, and appropriate name for what we are doing. Communities in the network would 

be worth exploring and understanding for further purposes. There are several methods and different approaches to detect 

community, but in this paper, I use two efficient methods to detect whole network which are named Louvain Method (LM) 

and Girvan-Newman Method (GNM). With LM, we can build a fast algorithm that is effective at community detection in 

massive networks and optimize the algorithm for better results. Using the GNM, a better approach that can identify the 

least number of edges that could be cut would result in a split network. We could do this by making an algorithm looking 

for the edges that the greatest number of shortest paths pass through. 

Keywords: Community Detection, Social Network Analysis, Social Network, Network Analysis, Whole Network 

Analysis, Network, Networkx. 
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1. INTRODUCTION 
It is useful in SNA, as humans interact with 

others as part of our various communities when we detect 

community, identifying the various communities or 

groups that exist in a network. We can also use these 

approaches to investigate any kinds of nodes that interact 

closely with other nodes, whether those nodes are 

animals, hashtags, websites, or any kind of nodes in a 

network. What communities would you be interested in 

exploring and understanding, and why? There are many 

good use cases for this. I can use it to understand the 

sentiment communities share about my product. I can use 

this to understand a threat landscape. I can use this to 

understand how ideas move and transform between 

different groups of people, etc. Be creative here. There 

are probably more uses for this than I can imagine. 

 

In this paper, I will explore this in the context 

of human life, but it should not feel limited to only using 

this for social network analysis. This is very useful in 

SNA, but it is also useful in analyzing most network data, 

not just social network data. For instance, this can be 

useful in both cybersecurity, malware analysis and 

computational humanities, or in understanding how ideas 

move between groups and evolve. 

 

Doing community detection, we have at least 

three different approaches, with the most frequently 

researched including the following: Node connectivity, 

Node closeness, Network splitting. Node connectivity 

has to do with whether nodes are part of the same 

connected component or not. If two nodes are not part of 

the same connected component, then they are part of a 

completely different social group, not part of the same 

community. Node closeness has to do with the distance 

between two nodes, even if they are part of the same 
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connected component. For instance, two people might 

work together in the same large organization, but if they 

are more than two handshakes away from one another, 

they may not be part of the same community. It would 

take several rounds of introductions for them to ever 

meet each other. Consider how many people you would 

have to go through to be introduced to your favorite 

celebrity. How many people would you need to be 

introduced to? Network splitting has to do with literally 

cutting a network into pieces by either removing nodes 

or edges. The preferred approach that I will explain is 

cuts on edges, but I have done something similar by 

removing nodes, shattering networks into pieces by 

removing central nodes. 

 

That is at the end of discovery for community 

detection? I do not believe that. I hope that reading 

through this paper will give you some ideas for new 

approaches to identifying the various communities that 

exist in networks. 

 

2. Getting Started with Community Detection 

For getting stared, we will be using several 

different Python libraries: Networkx, pandas, scikit-

network. These libraries should be installed. We also 

need a network to use. Let's use NetworkX's Les 

Miserables graph since it held several separate 

communities: 

 

First, we load the network 

Import networkx as nx 

Import pandas as pd 

G = nx.les_miserables_graph() 

 

We do not need edge weights for this simple 

demonstration. So, I am going to drop it and rebuild the 

graph. Then we converted the Les Miserables graph into 

a pandas edge list, and we kept only the 'source' and 

'target' fields, effectively dropping the weight field. Let's 

see how many nodes and edges exist in the network: 

 

df = nx. to_pandas_edgelist (G) [['source', 

'target'] 

# dropping 'weight' 

G = nx. from_pandas_edgelist (df) 

Print ('Number of nodes', len(G.nodes)) 

Print ('Number of edges', len(G.edges)) 

Print ('Average degree', sum (dict 

(G.degree).values ())/len(G.nodes) 

 

 

 

We have output: 

Number of nodes 77 

Number of edges 254 

Average degree 6.597402597402597 

 

Second, we need to build draw_graph function 

to draw graph instead of using draw function in the 

matplotlib.pyplot def draw_graph(G, 

show_names=False, node_size=1, font_size=10, 

edge_width=0.5): 

 

Import numpy as np  

From IPython.display import SVG  

From sknetwork.visualization import 

svg_graph  

From sknetwork.data import Bunch  

From sknetwork.ranking import PageRank 

Adjacency = nx. to_scipy_sparse_matrix(G, 

nodelist = None, dtype = None, weight = 

‘weight’, format = ‘csr’) 

Names = np. Array (list (G.nodes () 

Graph = Bunch () 

Graph. Adjacency = adjacency 

Graph. Names = np. Array (names) 

pagerank = PageRank() 

Scores = pagerank. fit_transform (adjacency) 

If show_names: 

Image = svg_graph (graph.adjacency, font_size 

= font_size, node_size-node_size, names = 

graph.names, width = 700, height = 500, scores 

= scores, edge_width = edge_width) 

 

Else: 

Image = svg_graph (graph.adjacency, 

node_size = node_size, width = 700, height = 

500, scores = scores, edge_width = edge_width) 

Return SVG (image) 

 

If we want to visualize the network in its entirety, by 

calling the draw_graph() like this: 

draw_graph(G, show_names = True, font_size 

= 12, node_size = 4,  

edge_width = 1) 

 

In the original Les Miserables graph, we should 

be able to see that there are several clusters of nodes that 

are very close to each other (communities), and there are 

a few critically important nodes. If those critically 

important nodes were removed, the network would 

shatter to pieces. We also have that there is no isolated 

node (nodes without edges), there are several nodes with 

a single edge (Figure 1). 
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Figure 1: Les Miserables graph (original) 

 

The last, we zoom in this graph a little, using 

k_core, only show nodes that have two or more edges, 

and not display labels so that we can get a sense of the 

overall shape of the network:  

 

Draw_graph(nx.k_core(G, 2), font_size = 12, 

show_names = False, node_size = 4, edge_width = 0.5) 

 

We will get the following visualization: 

 
Figure 2: Les Miserables graph (zoom in) 

 

The communitie graph should be a little clearer 

now (Figure 2). How many communities do there are? 

There are four, but there are smaller groups scattered 

around, and there is also likely a community in the center 

of the network. We begin our attempts at community 

detection. 

 

3. Exploring Connected Components for Detecting 

Communities (Connected Components Method) 

For understanding the various communities and 

structures that exist in a network is analyzing the 

connected components. As we can see, connected 

components are structures in networks where all nodes 

have a connection to another node in the same 
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component. Connected components can be useful for 

finding smaller connected components. Those can be 

thought of as communities as they are detached from the 

primary component and overall network, but the largest 

connected component is not typically a single 

community. It is usually made up of several 

communities, and it can usually be split into individual 

communities. 

 

In the Les Miserables network, there is only one 

connected component. There are no islands or isolates. 

There is just one single component. It takes away a bit of 

the usefulness of inspecting connected components for 

this graph. There is a way around that, if we remove a 

few critically important nodes from a network, that 

network tends to shatter into pieces by two following 

steps: 

 

Step 1: Remove five very important characters 

(['Valjean', 'Marius', 'Fantine', 'Cosette', 'Bamatabois'] 

from the network, and visualize the network again: 

G_сору = G.copy() 

G_copy.remove_nodes_from(['Valjean', 

'Marius', 'Fantine', 'Cosette', 'Bamatabois'] ) 

draw_graph(G_copy, font_size = 12, 

show_names = True, node_size = 4,  

edge_width = 1) 

 

We have the following visualization: 

 

 
Figure 3: Shattered Les Miserables network 

 

This network is much closer to how many real-

world networks look. There's still one primary connected 

component (continent), there are three smaller connected 

components (islands), and there are six isolated nodes. 

There is no threshold for deciding that an island is a 

continent. It is just that most networks contain one super-

component (continent), lots and lots of isolated nodes, 

and several connected components (islands). This helps 

to do more analyst. 

 

What I just did could be used as a step-in 

community detection. Removing a few key nodes can 

break a network apart, pulling out the smaller 

communities that exist. Those critically important nodes 

held one or more communities together as part of the 

larger structure. Removing the important nodes allowed 

the communities to drift apart. It is not usually ideal. 

However, other actual approaches to community 

detection work similarly, by removing edges rather than 

nodes. 

 

Step 2: Remove isolated nodes and inspect each one. 

After shattering the network there are 10 

connected components left, but 6-isolates are not 

connected to anything other than possibly themselves. 

We remove them before looking into connected 

components: 

 

G_copy = nx.k_core(G_copy, 1) # Remove 

isolated nodes 

Community = components [0] 

G_community = 

G_copy.subgraph(community) 

draw_graph(G_community, show names = 

True, node_size = 5) 
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Let's look at the visualization: 

 

 
Figure 4: Component 0 subgraph of the shattered Les Miserables network 

 

That is very interesting. The first connected 

component is almost a star network, with all nodes 

connecting to one central character, Myriel. However, if 

you look at the top left, you should see that two 

characters also share a link. That relationship could be 

worth investigating. 

 

 

Let's look at the next component. 

Community = components [1] 

G_community = G_copy. subgraph 

(community) 

draw_graph (G_community, show_names = 

True, node_size = 4) 

 

This gives us the following output: 

 

 
Figure 5; Component 1 subgraph of the shattered Les Miserables network 
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This is the primary component. It's the largest 

connected component in the shattered network. 

However, connected components are not ideal for 

identifying communities. Look slightly left of the center 

in the network - we should see two clusters of nodes 

['Gavroche', 'Javert'], two separate communities. There is 

also at least one other community on the right. If two 

edges or nodes were removed, the community on the 

right would split off from the network. 

Let's continue with the third component: 

Community = components [2] 

G_community = 

G_copy.subgraph(community) 

draw_graph(G_community, show_names = 

True, node_size = 4) 

 

We have following output: 

 

 
Figure 6: Component 2 subgraph of the shattered Les Miserables network 

 

This is a strongly connected component. Each 

node has a connection to the other nodes in this network. 

If one node were removed, this network would remain 

intact. From a network perspective, each node is as 

important or central as each other node. 

 

Let's move to the final component: 

Community = components[3] 

G_community = 

G_copy.subgraph(community) 

draw_graph(G_community, show_names = 

True, node_size = 4) 

 

We have the following output. It is a densely 

connected network. Each node is equally important or 

central. If one node were to be removed, this network 

would remain intact. 

 

 
Figure 7: Component 3 subgraph of the shattered Les Miserables network 
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We were able to find three communities by 

looking at the connected components, but connected 

components did not draw out the communities that exist 

in the larger primary component. If we wanted to draw 

those out, we would have to remove other important 

nodes and then repeat our analysis. Removing away 

nodes is one way to lose information, so I do not 

recommend that approach, but it can be useful for quick 

ad hoc analysis. 

 

Communities can be found while investigating 

connected components, I also do not consider 

investigating connected components to be community 

detection. I consider this one of the first steps that should 

be taken during any network analysis, and the insights 

gained are valuable, but it's not sensitive enough for 

community detection. 

 

If your network contained no super-cluster of a 

connected component, then connected components 

would be pretty adequate for community detection. 

However, you would have to treat the super-cluster as 

one community, and the cluster contains many 

communities. The connected component approach 

becomes less useful with larger networks. 

 

So, we move on to more suitable methods. First, 

dabbling in community detection by starting with the 

Louvain method, and then picking up other approaches. 

It's good to know that there are options. 

 

4. Using the Louvain Method for Detecting 

Communities 

The Louvain method works through a series of 

passes, where each pass contains two phases. The first 

phase assigns different communities to each node in the 

network. Initially, each node has a different community 

assigned to it. Then, each neighbor is evaluated, and 

nodes are assigned to communities. The first step 

concludes when no more improvements can be made. In 

the second phase, a new network is built, with nodes 

being the communities discovered in the first step. Then, 

the results of the first phase can be repeated. The two 

steps are iterated until optimal communities are found. 

Using the Louvain method, we have a fast algorithm that 

is effective at community detection in massive networks, 

and we can optimize the algorithm for better results. 

 

The Louvain method has been included in more 

recent versions of Networkx, so if you have the latest 

version of Networkx, you will not need to use the 

community Python library. Your version will be 

different, if you use the older version, you need to use the 

community library approach. First, we build code that 

will help us draw Louvain partitions: 

 

Import community as community_louvain 

Import networkx as nx 

G = nx.les_miserables_graph() 

def draw_partition(G, partition): 

Import matplotlib.cm as cm  

Import matplotlib.pyplot as plt 

# draw the graph 

plt.figure(3, figsize = (12,12)) 

pos = nx.spring_layout(G) 

# color the nodes according to their partition  

cmap = cm.get_cmap('jet', 

max(partition.values()) + 1) 

nx.draw_networkx_nodes(G, pos, 

partition.keys(), node_size = 40,  

cmap = cmap, node_color = list 

(partition.values())) 

nx.draw_networkx_edges(G, pos, alpha = 0.5, 

width = 0.3) 

Return plt.show() 

 

Starting to use the best partition function to 

identify the optimal partition using the Louvain method. 

During the testing, I found resolution = 1 to be ideal, but 

with other networks, you should experiment with this 

parameter: 

 

Partition = 

community_louvain.best_partition(G, 

resolution=1) 

draw_partition(G, partition) 

 

This code has created a visualization: 
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Figure 8: Louvain method community detection of the Les Miserables network 

 

The draw partition () function in step 1 will 

color nodes by the communities that they belong to. The 

important thing is that separate communities have been 

detected, and each community of nodes is identified with 

a different color. Each node belongs to a different 

partition, and those partitions are the communities. 

 

Second, we look at what is inside the partition variable: 

Partition 

 

{'Napoleon':1, 

'Myriel':1, 

'MlleBaptistine':1, 

'MmeMagloire'1, 

'CountessDeLo':1, 

'Geborand':1, 

… 

'Grantaire':0, 

'Childl':0, 

'Child2':0, 

'BaronessT':2, 

'MlleVaubois':2, 

'MotherPlutarch': 0} 

 

To save space, I cut out some of the nodes and 

partitions. Each node has an associated partition number, 

and that's the community that it belongs to. I want to get 

a list of nodes that belong to an individual community, 

so I do:  

 

[Node for node, community in partition. Items () if 

community == 2] 

 

The Louvain method is so exciting. For one 

thing, it can scale to massive networks, allowing for 

research into the largest networks, such as the internet. 

Second, it's fast and practical. There is not a lot of point 

to an algorithm that is so slow as to only be useful on tiny 

networks. Louvain is practical with massive networks. 

This algorithm is fast and efficient, and the results are 

very good. This is an algorithm for community detection. 

 

We have another option for community detection by 

using Girvan-Newman method. 

 

5. Using Girvan-Newman Method for Detecting 

Communities 

At previous, we noticed that the Les Miserables 

network consisted of a single large, connected 

component and that there were no isolates or smaller 

"islands" of communities apart from the large, connected 

component. To show how connected components could 

be useful for identifying communities, we shattered the 

network by removing a few key nodes. That approach is 

not typically ideal. While there is information in both 

nodes (people, places, things) and edges (relationships), 

in my experience, it is typically preferable to throw away 

edges than to throw away nodes. 

 

A better approach than what we did previously 

would be to identify the least number of edges that could 

be cut that would result in a split network. We could do 

this by looking for the edges that the greatest number of 

shortest paths pass through - that is, the edges with the 

highest edge_betweenness_centrality. That is precisely 

what the Girvan-Newman algorithm does. 

 

In a network, there are several nodes on two 

different sides connected by a few edges. It almost looks 

like a few rubber bands are holding the two groups 

together. If you snip the rubber bands, the two 

communities should fly apart, similar to how networks 

shatter into pieces when key nodes are removed. This is 

more surgically precise than removing nodes. There is 

less loss of valuable information. Losing information on 

certain relationships is a drawback. 

 

Through a series of iterations, the Girvan-

Newman method identifies edges with the highest 



 
 

Tran Dang Hung; Saudi J Eng Technol, Apr, 2024; 9(4): 192-204 

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates                                            200 

 
 

edge_betweenness_centrality scores and removes them, 

splitting a network into two pieces. Then, the process 

begins again. If not repeated enough, communities are 

too large. If repeated too many times, communities end 

up being a single node. So, there will be some 

experimentation when using this algorithm to find the 

ideal number of cuts. 

 

The downside of this algorithm is that it is not 

fast. Calculating edge_betweenness_centrality is much 

more computationally expensive than the computations 

being done for the Louvain method. As a result, this 

algorithm ceases to be useful very quickly, as it becomes 

much too slow to be practical. However, if your network 

is small enough, this is a very cool algorithm to explore 

for community detection. It's also intuitive and easy to 

explain to others. 

 

I tried this out with the Les Miserables graph. 

The graph is small enough that this method should be 

able to split it into communities quickly: 

 

First, we import the algorithm, and need to pass 

the graph to the algorithm as a parameter. When we do 

this, the algorithm will return the results of each iteration 

of splits, which we can investigate by converting the 

results into a list: 

 

From networkx.algorithms.community import 

girvan_ newman 

Communities = girvan_newman(G) 

Communities = list(communities) 

Print ('Maximum number of iterations that the 

algorithm consisted of a single node:', 

len(communities)) 

 

# Output: 76 

Second, I could investigate the various levels of 

splits and find the one that looks best for my needs. We 

have 76 iterations of splits kept in a Python list. It could 

be very early in the process, in the first 10 splits, or it 

might be a bit later. This part requires some analysis, 

further making this a bit of a hands-on algorithm. 

 

For continuously, I assume that we found that 

the tenth iteration of splits yielded the best results. Let's 

set the tenth iteration results as our final group of 

communities, and then visualize the communities as we 

did with the Louvain method. 

 

Communities = communities [9] 

I will be keeping the tenth iteration results and 

dropping everything else. If I did not want to throw away 

the results, I could have used a different variable name. 

To see what these communities look like so that we can 

compare them against the other algorithms we discussed: 

 

Community = communities [0] 

G_community = G.subgraph (community) 

draw_graph(G_community, show_names = 

True, node_size = 5) 

 

This code has created a visualization: 

 

 
Figure 9: Girvan-Newman community detection of the Les Miserables network, community 0 

 

This subgraph (community 0) is familiar the 

subgraph that I shattered the network by nodes and then 

visualized connected components. This algorithm split 

the network using edges and managed to find the same 

community. 
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We go forward with another communities: 

Community = communities [1] 

G_community = G.subgraph (community) 

draw_graph(G_community, show_names = 

True, node_size = 5) 

 

We have the following output: 

 

 
Figure 10: Girvan-Newman community detection of the Les Miserables network, 

 

Community 1 

It is not uncommon when community 1 has a densely 

connected group, as well as some less connected nodes. 

 

Let's see community 2: 

Community = communities [2] 

G_community = G.subgraph (community) 

draw_graph(G_community, show_names = 

True, node_size = 5) 

 

We have the following output: 

 

 
Figure 11: Girvan-Newman community detection of the Les Miserables network, 
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Community 2 

Let's move to the community 3: 

Community = communities [3] 

G_community = G.subgraph (community) 

draw_graph(G_community, show_names = 

True, node_size = 5) 

 

We have the following output: 

 

 
Figure 12: Girvan-Newman community detection of the Les Miserables network, 

 

Community 3 

Community 2, community 3 is similar to 

community 1. They have a densely connected group of 

nodes and some nodes with a single edge. This looks 

great. 

 

And the next one – the community 4: 

Community = communities [4] 

G_community = G.subgraph (community) 

draw_graph(G_community, show_names = 

True, node_size = 5) 

 

We have the following network: 

 

 
Figure 13: Girvan-Newman community detection of the Les Miserables network, 
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Community 4 

While this may be less visually appealing to 

look at, this impresses me more than the other network 

visualizations. This is a less obvious community, found 

only by cutting edges with the highest 

edge_betweenness_centrality scores. There is a slightly 

more connected group of nodes in the center, surrounded 

by nodes with a single edge each on the outskirts. 

 

The Girvan-Newman method can give really 

good and clean results. The only downside is its speed. 

Calculating edge_betweenness_centrality and 

shortest_paths is time-consuming, so this method is 

much slower than the others that we discussed, but it can 

be very useful if your network is not too large. 

 

All these algorithms that we have just explored 

were ideas that people had on how to identify 

communities in networks, either based on nearness to 

other nodes or found by cutting edges. However, these 

are not the only approaches. If we are continuing with an 

approach before learning about the Girvan-Newman 

algorithm that cuts nodes rather than edges. When I 

studied about the Girvan-Newman approach, I found that 

to be more ideal and gave up on my implementation. But 

that got me thinking, what other approaches might there 

be to better identify communities in networks? Let's try 

to discover other ways of identifying communities later 

more. 

 

6. CONCLUSION 
We have just studied several different 

algorithmic approaches for community detection. First, 

we use the connected components method, it can be 

useful for identifying communities, but only if the 

network consists of more than just one single primary 

component. To use connected components to identify 

communities, there need to be some smaller connected 

components split off. It's very important to use connected 

components at the beginning of your network analysis to 

get an understanding of the overall structure of your 

network, but it is less than ideal as a standalone tool for 

identifying communities. Next, we used the Louvain 

method. This algorithm is extremely fast and can be 

useful in networks where there are hundreds of millions 

of nodes and billions of edges. If your network is very 

large, this is a useful first approach for community 

detection. The algorithm is fast, and the results are clean. 

There is also a parameter you can experiment with to get 

optimal partitions. Finally, we used the Girvan-Newman 

algorithm, which is an algorithm that finds communities 

by performing several rounds of cuts on edges with the 

highest edge_betweenness_centrality scores. The results 

were very clean. The downside of this algorithm is that 

it is very slow and does not scale well to large networks. 

However, if your network is small, then this is a very 

useful algorithm for community detection. 

 

Community detection is one of the most 

interesting areas of network analysis. It is one thing to 

analyze networks as a whole or explore ego (connections 

between nodes) networks but being able to identify and 

extract communities is another skill that lies between 

whole network analysis and ego-centric network 

analysis. 

 

Community detection techniques will be 

helpful in supervised machine learning and unsupervised 

machine learning research. These techniques would be 

code-heavy, not math-heavy. There are tons of 

community detection techniques out there that have an 

emphasis on math but do not show actual implementation 

very well, or at all. I hope these methods have effectively 

bridged the gap, giving a new skill to coders, and 

showing programmatic ways to take the network analysis 

to new heights. 
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