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Abstract  
 

Drilling is one of the most common and rudimental machining methods in the manufacturing industries for removal of 

unwanted material from the workpiece. How the cutting instrument and workpiece interact results in a mechanical force 

that causes the formation of chips during penetration, and these chips are evacuated through the flute created on the body 

of the drill tool. The interplay of forces at the drill point generates high temperatures, needed for the physical and chemical 

processes that weaken tools and lead to breakage. Optimal experimental designs are very important to obtain accurate 

optimization of engineering processes, an expert method was used to design the experimental layout and utilizing the 

Design Expert software, an experimental matrix which developed the parameters design of twenty experimental runs. The 

present study uses Artificial Neural Networks (ANN) and Response Surface Methodology (RSM) to forecast and optimize 

cutting forces during dry drilling operations. In developing the model, a dataset that included several factors such as depth 

of cut, feed rate, and cutting speed was used. The RSM model demonstrated a significant correlation between input 

parameters and cutting forces, as evidenced by its high coefficient of determination (R²) of 0.9493. On the other hand, the 

ANN model, which was trained using 70% of the data and validated using 15% of the data, showed a little lower R² value 

of 0.81434, but it was still able to make accurate predictions. Cutting forces were well predicted by both models, with RSM 

exhibiting a somewhat better performance in terms of accuracy. The results indicate that both RSM and ANN can be useful 

instruments for dry drilling cutting force optimization, offering insights for increased productivity and efficiency in 

machining operations. 
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1. INTRODUCTION 
The sectors involved in machining are 

continuously searching and finding new methods to 

lessen the forces produced when cutting metal, lengthen 

the tool's life, and better surface quality (Velan et al., 

2021). Workpiece deformation that is elastic and the 

subsurface residual stress injection that occurs during 

cutting can reduce the precision of machining. It is vital 

to have a better understanding of how cutting 

circumstances and tool wear affect finished surfaces and 

their geometrical flaws to be able to predict how cutting 

forces affect changes in surface integrity (Toubhans et 

al., 2020). Cutting forces have a significant impact on 

tool wear, surface quality, and overall machining 

efficiency when doing machining processes. To increase 

machining operations and increase tool life, cutting force 

prediction and optimization are crucial (Imani et al., 

2020). Different materials have different machining 

properties, therefore specific methods for anticipating 

and maximizing cutting pressures are required (Gupta et 

al., 2022). Optimizing cutting forces in practical 

applications frequently entails juggling competing goals 

like avoiding tool wear, increasing material removal rate, 

and lowering energy usage. To find Pareto-optimal 

solutions, multi-objective optimization methods such as 

evolutionary algorithms are applied. Foreseeing and 

optimizing cutting forces requires a thorough 

understanding of the wear mechanisms that take place 

during the machining process. The following wear 

modes exist: adhesion, abrasion, diffusion, flank wear, 

and crater wear. The choice of tool material has a 

considerable influence on tool life and cutting forces. 
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(Xavior & Jeyapandiarajan, 2019) In order to improve 

tool performance, research in this field examines the 

creation of improved tool materials such as ceramics, 

carbides, and coatings. Processes for machining 

optimization can be greatly aided by machine learning 

techniques. Increased tool life can improve the cutting 

process' machinability and sustainability. Cutting fluids 

are preferably used to extend the tool life. Nonetheless, 

most cutting fluids are not biodegradable by nature and 

have negative environmental risks (Ali et al., 2022). In 

order to forecast three parameters for cutting used in high 

speed turning operations: cutting force (Fc), surface 

roughness (Ra), and tool lifespan (T), Zhang and Xu 

(2021) built Gaussian process regression models 

according to the cutting speed (Vc), feed rate (f), and 

depth of cut (ap). The life and cutting force coefficients 

(CFCs) were established in the work by Broderick et al., 

(2021) by evaluating the machinability performance of 

additives (mineraloil, phosphate ester (P-ester), and 

dialkyl pentasulphide). Cutting-edge micro-geometry is 

crucial to the process of machining. Wear resistance, tool 

life, and process dependability are all improved by 

cutting edges that are the right size and form (Lv et al., 

2020). When cutting CFRP materials, tool shape plays a 

big role (Knápek et al., 2023). To increase machining 

precision and tool life during the power skiving process, 

Onozuka et al., (2020) created a computational model for 

the cutting forces and area. Internal gear power skiving 

involves complicated interactions between the direction 

of the cut as well as the relative velocity of the device 

and the piece of work, chip thickness, and effective rake 

angle. In order to improve machined surface integrity 

and tool life, which was an important issue to be tackled 

in turning of iron-based superalloy, Zhang et al., (2020) 

looked into the surface roughness, cutting force, and tool 

life. GH2132 was the subject of turning experiments 

using coated carbide and cermet tools. According to 

Karpuschewski et al., (2018), the Workpiece-Fixture-

Machine Tool-Cutting Tool (WFMC) system's workload 

and tool life are affected by the force increase. Since the 

cutting force can only be computed using the Kienzle and 

Viktor connection when utilizing a feed rate that is 

substantially higher than usual, we must be aware of the 

change in the particular cutting force (kc1.1) as well as 

the exponent associated with it (z). There are now new 

opportunities and problems in forecasting and optimizing 

cutting forces as a result of recent developments in 

machining technology, such as high-speed machining, 

cryogenic machining, and sustainable machining. It is a 

challenging and interdisciplinary area of research to 

predict and optimize cutting forces for increasing tool 

life and machining effectiveness. In addition to an 

understanding of material properties, tool wear 

mechanisms, and optimization approaches, it requires a 

combination of analytical, empirical, and computational 

methods (Kuntolu et al., 2020). This field's 

advancements help a variety of industries' machining 

operations become more economical and 

environmentally friendly. 

 

2. METHODOLOGY 
2.1 Research Design 

The present study deals with the forces that 

comes to play during dry drilling that can cause tool 

breakage, with a view of examining the their causative 

effects. The drilling operation will be conducted on a DT 

drilling machine. The information gotten from literature 

was used as a guide for the selection of the major steps 

involved in dry drilling process. A central composite 

design was selected, considering four main drilling 

variables, specifically cutting depth, feed rate, and 

cutting speed. The material used was mild steel plate 

with dimension 100mm by 400mm by 50mm, where 

about 100 samples was produced for this experiment. 

  

2.2 Response Surface Methodology 

In RSM, the function's optimal value might be 

either minimal or maximal depending on the process 

input parameters. It is an optimization techniques that is 

currently being widely utilized to assess the performance 

of the welding process and determine the most 

appropriate optimal solution of responses to the input 

variables. RSM is a collection of statistical and algebraic 

methods that are helpful in modeling and forecasting the 

response of interest that depends on several variables for 

input in order to minimize or maximize this response.  

 

2.3 Artificial Neural Network 

Neural networks are tools for data mining that 

are used to find patterns in databases that are hidden. 

There are two important ways in which they mimic the 

brain, functioning as massively parallel distributed 

processors. Through a process of learning, the network 

gains knowledge. Synaptic weights, another name for 

interneuron connection strengths, are where this 

information is kept. An appropriate weight, represented 

by the letter w, is applied to a basic neuron with R input. 

The input to the transfer function f is the total weighted 

inputs plus the bias. Any differentiable transfer function 

f can be utilized by neurons to generate their output. The 

log-sigmoid transfer function, or logsig, is widely 

employed in multilayer networks and generates outputs 

in the 0 to 1 range when the net input of the neuron varies 

reaching positive infinity from negative. The tan-

sigmoid transfer function, or tansig, is an additional 

option for multilayer networks. Whereas linear output 

neurons are typically employed for function fitting 

issues, sigmoid output neurons are frequently utilized for 

pattern recognition tasks.  

 

3. RESULTS AND DISCUSSION 
In this investigation, twenty set of experiments 

was done, each experimental run comprising the depth of 

cut, feed rate, and cutting speed. The cutting force 

response were measured. 

 

3.1 Modeling using RSM 

Design of experiment and process optimization 

was implemented utilizing statistical software. In this 
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instance, Design Expert 7.01 was applied. The sequential 

model sum of squares was computed for the measured 

cutting force, as shown in Table 1, to confirm that the 

quadratic model was suitable for interpreting the 

experimental results. 

 

Tables 1: Sequential sum of square for measured cutting force 

 Sum of  Mean F p-value  

Source Squares Df Square Value Prob > F  

Mean vs Total 1.038 x 106 1 1.038 x 106    

Linear vs Mean 55990.46 3 18663.49 2.20 0.1281  

2FI vs Linear 2940.38 3 980.13 0.096 0.9610  

Quadratic vs 2FI 1.233 x 105 3 41087.85 42.23 < 0.0001 Suggested 

Cubic vs Quadratic 5788.04 4 1447.01 2.20 0.1851 Aliased 

Residual 3940.78 6 656.80    

Total 1.230 x 106 20 61489.00    

 

From Table 1, the Quadratic vs 2FI model is 

suggested based on the sequential model sum of square. 

It was shown that the ‘Cubic vs Quadratic’ model is 

aliased, making it unfit for use.  

 

The lack of fit test is calculated in order to 

determine as to what degree does the quadratic model 

account for the fundamental variance associated with the 

experimental findings. It is not possible using a model 

with a considerable lack of fit for prediction, hence, the 

calculated lack of fit results for the cutting force is 

illustrated in Table 2. 

 

Table 2: Lack of fit Test for Cutting Force Response 

 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  

Linear 1.320 x 105 11 11999.39 15.23 0.0038  

2FI 1.291 x 105 8 16131.61 20.47 0.0020  

Quadratic 5789.32 5 1157.86 1.47 0.3415 Suggested 

Cubic 1.28 1 1.28 1.624 x 10-3 0.9694 Aliased 

Pure Error 3939.50 5 787.90    

 

It was observed from Table 2, that due to a considerable lack of fit, the cubic polynomial was aliased to model 

analysis, whereas the non-significant lack of fit of the quadratic polynomial is suggested for the model’s analysis. Table 3 

shows the Model Summary Statistics calculated for the Cutting Force Response. 

  

Table 3: Model Summary Statistics for the Cutting Force Response 

 Std.  Adjusted Predicted   

Source Dev. R-Squared R-Squared R-Squared PRESS  

Linear 92.17 0.2917 0.1589 -0.0237 1.965 x 105  

2FI 101.14 0.3071 -0.0128 -0.6905 3.244 x 105  

Quadratic 31.19 0.9493 0.9037 0.7410 49705.85 Suggested 

Cubic 25.63 0.9795 0.9350 0.9690 5950.56 Aliased 

 

Table 3 illustrates the selected Models' adjusted 

r-squared, predicted r-squared, predicted error sum of 

square (PRESS) statistic, coefficient of determination 

(R2), standard deviation (Root MSE), and predicted R-

squared. The cubic polynomial model is aliased while the 

quadratic polynomial model is recommended because it 

had the greatest anticipated r-square value, the smallest 

predicted error sum of square value, and the greatest 

adjusted r-square value. The goodness of fit statistics 

used to confirm the quadratic model suitability is shown 

in Table 4. 

 

Table 4: GOF for validating Model Significance Cutting Force 

Std. Dev. 31.19 R-Squared 0.9493 

Mean 227.80 Adj R-Squared 0.9037 

C.V. % 13.69 Pred R-Squared 0.7410 

PRESS 49705.85 Adeq Precision 13.003 

 

From Table 4, there is decent amount of 

agreement between the ‘Adj R-Squared’ value of 0.9037 

and the ‘Predicted R-Squared’ value of 0.7410. The 

computed ratio of 13.003 denotes a sufficient signal.  
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Figure 1 showns the normal probability plot of 

the residual for cutting force in order to assess the 

response surface model statistical features. 

 

 
Figure 1: Normal probability plot of studentized residuals for cutting force 

 

The normality of the computed residuals 

evaluated using the normal probability plot of 

studentized residuals. In order to determine if the 

residuals (observed – expected) adhere to a normal 

distribution, the normal probability plot of residuals, 

which represents the actual values' number of standard 

deviations is utilized.  

The cook's distance indicates the amount by 

which the regression would change if the outlier were 

eliminated from the investigation. Thus, it is important 

to look into any point that appears to be an outlier and 

possesses a distance value that is significantly higher 

than the other points as described in Figure 2. 

 

 
Figure 2: Generated cook’s distance for cutting force 

 

As shown in Figure 3, the cook's distance plot 

has an upper bound of 1.00 and a lower bound of 0.00. 

Experimental values that deviate significantly from the 

bottom or upper bounds are known as outliers and 
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require close examination. From Figure 3, there are no 

potential outliers thus, demonstrating the suitability of 

the experimental data.  

 

The three-dimensional surface map shown in 

Figure 3, describes how the combined input factors 

affects the cutting force response,  

 
Figure 3: 3D Surface Plot for measured cutting force, cutting speed and feed rate 

 

In Figure 4, the 3D surface plots illustrates the impacts of combining input factors on the response variable (cutting force). 

 

 
Figure 4: 3D Surface Plot for measured cutting force, depth of cut and feed rate 

 

Figure 5 displays the 3D surface plots by combining input factors affects the response variable, cutting force. 
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Figure 5: 3D Surface Plot for measured cutting force, depth of cut and cutting speed 

 

 

The contour plots shows the relationship of the 

input variables (depth of cut, feed rate, and cutting speed) 

and the response variable (cutting force) . 

Figure 6,7 and 8 displays the contour plots, 

based on the 3D Surface Plot. 

 

 
Figure 6: Contour plots measured cutting force, depth of cut and cutting speed 
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Figure 7: Contour plots measured Cutting force, cutting speed and feed rate 

 

 
Figure 8: Contour plots measured Cutting force, depth of cut and feed rate 

 

4.2 Modelling and Prediction using the ANN 

The training, performance, and data division 

algorithms were configured as follows: Levenberg-

Marquardt (Trainlm), mean squared error (MSE), and 

random (Dividerand). The neural network diagram used 

to forecast the cutting force responses is shown in Figure 

9 while the trained network's performance curve is 

illustrated in Figure 10.  
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Figure 9: Network training diagram for predicting cutting force responses 

 

 
Figure 10: Performance curve for trained network to predicting cutting force responses 

 

From Figure 9, the Network training diagram 

for predicting cutting force responses shows 7 iterations 

and 6 validation checks while Figure 10 the best 

validation performance at 3861.7495 at epoch 1. An 

epoch in MATLAB is equivalent to a whole training loop 

of an ANN. This indicates that one epoch has been 

reached when every vector in your training set has been 

used or processed by your training algorithm. As such, 

the training strategy employed determines the ‘real-time 

duration’ of a given epoch. Even though the iteration 

procedure required a total of 7 epochs, the best prediction 

for the cutting force responses was reached at epoch 1. 

The Neural network gradient plot for predicting cutting 

force response is described in Figure 11. 

 



 
 

Onyiruika F. O. et al; Saudi J Eng Technol, Mar, 2024; 9(3): 154-164 

© 2024 | Published by Scholars Middle East Publishers, Dubai, United Arab Emirates                                            162 

 
 

 
Figure 11: Neural network gradient plot for predicting cutting force responses 

 

As one epoch denotes a single algorithm 

training cycle, from Figure 11, the number of epochs 

used up during training is at epoch 7. The dotted red lines 

for the validation checks showed that epoch 1 had the 

lowest failure rate, further indicating that the first epoch 

yielded the best forecast out of the seven epochs studied. 

The Regression plot of training, validation and testing for 

cutting force response is illustrated in Figure 12. 

 

 
Figure 12: Regression plot of training, validation and testing for bead penetration responses. 

 

Figure 15 describes the training, validation, and 

testing plots. The correlation coefficient (R) is seen to be 

more than 80%, indicating a reliable prediction for the 

cutting force.  

 

5.1 CONCLUSION 
The study has developed and applied two 

predictive expert techniques to model and predict the 
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cutting force by utilizing the RSM and ANN. The central 

component design (CCD) was used to design the 

experiment. The RSM model demonstrated a significant 

correlation between input parameters and cutting forces, 

as evidenced by its high coefficient of determination (R²) 

of 0.9493. On the other hand, the ANN model, which was 

trained using 70% of the data and validated using 15% of 

the data, showed a little lower R² value of 0.81434, but it 

was still able to make accurate predictions. The RSM, in 

for this study is seen to be a better predictive expert 

system than the RSM. The results indicate that both RSM 

and ANN are useful instruments for dry drilling cutting 

force optimization, offering insights for increased 

productivity and efficiency in machining operations. 
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