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Abstract  
 

Compression schemes can be divided into two categories, lossy and lossless, but this paper presents lossless data 

compression models and the original data can be correctly recovered from the data compressed material. Some 

mathematical results are assumed; the results of probability tests are assumed and used to evaluate the compression 

techniques we will discuss. To learn more about math concepts for some of the topics in this article, see [2, 3]. First, we 

look at several ideas in information theory that provide a standard for the development of lossless data compression 

schemes are briefly reviewed. We next look at several ways to model data that lead to efficient data compression 

encryption schemes. 
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I. INTRODUCTION 
Compression technique or compression 

algorithm is included two algorithms. The compression 

algorithm takes an input X (original data) and generates 

a representation Y (compressed data) that requires 

fewer bits. The reconstruction algorithm operates on the 

compressed representation Y to generate the 

reconstruction Z. These operations are shown 

schematically in Figure 1. We by convention refer to 

both compression and reconstruction algorithms 

together to mean compression algorithm. 

 

 
Figure 1: Compression and reconstruction 
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Data compression schemes can be divided into 

two schemes: lossless compression schemes, in which Z 

is the same to X, and lossy compression schemes, 

which generally provide much higher compression than 

lossless compression but allow Z to be different from X. 

 

Lossless Compression 

Lossless compression techniques involve no 

loss of information. Lossless compression is generally 

used for applications that cannot tolerate any difference 

between the original and reconstructed data (Text 

compression is an example for lossless compression). 

Data have been losslessly compressed; the original data 

can be recovered exactly from the compressed data.  

 

Lossy Compression  

Lossy compression techniques involve some 

loss of information. Data have been compressed using 

lossy techniques generally cannot be recovered or 

reconstructed exactly. In return for accepting this 

distortion in the reconstruction, we can generally obtain 

much higher compression ratios than is possible with 

lossless compression. For example, when storing or 

transmitting speech, the exact value of each sample of 

speech is not necessary.  

 

II. INFORMATION THEORY 
Claude Elwood Shannon, an American 

mathematician, developed information theory [12]. 

Shannon defined a quantity called self-information. 

Suppose we have an event X, which is a set of outcomes 

of some random experiment. If P(X) is the probability 

that event X will occur, then the self-information 

associated with X is given by 

1
( ) log log ( ). (1)

( )
  b bi X P X

P X
 

 

The unit of information depends on the base of 

the log. If we use log base 10, the unit is hartleys; if we 

use log base e, the unit is nats; and we use log base 2, 

the unit is bits. Using the logarithm to obtain a measure 

of information was not an arbitrary choice. First, let’s 

see if the use of a logarithm in this context makes sense 

from an intuitive point of view. The fact that −log(x) 

increases as x decreases from one to zero. In another 

word, i(X) increases as P(X) decreases from one to zero. 

It means that, if the probability of an event is high, the 

information associated with it is low; if the probability 

of an event is low, the amount of self-information 

associated with it is high. 

 

Another property of this mathematical 

definition of information is that the information 

obtained from the occurrence of two independent events 

is the sum of the information obtained from the 

occurrence of the individual events. Suppose X and Y 

are two independent events. The self-information 

associated with the occurrence of both event X and 

event Y is, by Equation (1), 

 

( ) log ( )

log ( ) ( )

log ( ) log ( )

( ) ( ).

b

b

b b

i XY P XY

P X P Y

P X P Y

i X i Y

 

 

  

 

 

 

Definition 2.1. If S is the sample space of experiment

S  that we have a set of independent events
iX , which 

are sets of outcomes of some experiment S , such that 

iX S  

then the average self-information associated with the 

random experiment is given by 

( ) ( ) ( ) log ( )   i i i b iH P X i X P X P X  

 

The quantity H is called the entropy associated 

with the experiment. If the experiment is a source that 

puts out symbols iX  from a set X , then the entropy is 

a measure of the average number of binary symbols 

needed to code the output of the source. Then, the best 

that a lossless compression scheme can do is to encode 

the output of a source with an average number of bits 

equal to the entropy of the source. 

 

The set of symbols X is often called the 

alphabet for the source, and the symbols are referred to 

as letters. For a general source S  with alphabet 

{1, 2,..., }X  m that generates a sequence 

1 2{ , ,...}X X , the entropy is given by 

1
( ) lim (2)S


 n

x
H G

n
 

Where

1 2

1 2

1 1 2 2 1 1 2 2

1 1 1

... ( , ,..., ) log ( , ,..., )
 

  

        
n

n

i mi m i m

n n n n n

i i i

G P X i X i X i P X i X i X i  

and 1 2{ , ,..., }nX X X  is a sequence of length n from the source. If each element in the sequence is independent and 

identically distributed (iid), then we can show that 

1

1

1 1 1 1

1

( ) log ( ) (3)




   
i m

n

i

G n P X i P X i  

and the equation for the entropy becomes 

( ) log ( ) (4)  i iH P X P X  
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For most sources Equations (2) and (4) are not 

identical. If we need to distinguish between the two, we 

will call the quantity computed in (4) the first-order 

entropy of the source, while the quantity in (2) will be 

referred to as the entropy of the source. 

 

In general, it is not possible to know the 

entropy for a physical source, so we have to estimate 

the entropy. The estimate of the entropy depends on our 

assumptions about the structure of the source sequence.  

Consider the following sequence: 

1 2 3 4 5 4 5 6 7 8 7 8 9 10 11 10 11 12 13 14 13 14 15 

16 17 16 17 18 19 20 19 20 

 

Assuming the frequency of occurrence of each 

number is reflected accurately in the number of times it 

appears in the sequence, we can estimate the probability 

of occurrence of each symbol as follows: 

1
(1) (2) (3) (6) (9) (12) (15) (18)

32
       P P P P P P P P  

1
(4) (5) (7) (8) (10) (11) (13) (14) (16) (17) (19) (20) .

16
           P P P P P P P P P P P P

 
 

Assuming the sequence is iid, the entropy for 

this sequence is the same as the first-order entropy as 

defined in (4). The entropy can then be calculated as 
20

2

1

( ) log ( ).


 
i

H P i P i  

 

With our stated assumptions, the entropy for 

this source is 4.25 bits. This means that the best scheme 

we could find for coding this sequence could only code 

it at 4.25 bits/sample.  

 

However, if we assume that there was sample-

to-sample correlation between the samples and we 

remove the correlation by taking differences of 

neighboring sample values, we arrive at the residual 

sequence 

1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 1 1 -1 1 1 

1 1 -1 1 

 

This sequence is constructed using only two 

values with probabilities 
13

(1)
16

P  and
3

( 1)
16

 P . 

The entropy in this case is 
2

2

1

( ) log ( ) 0.69


  
i

H P i P i bits per symbol. Of 

course, knowing only this sequence would not be 

enough for the receiver to reconstruct the original 

sequence. The receiver must also know the process by 

which this sequence was generated from the original 

sequence. The process depends on our assumptions 

about the structure of the sequence. These assumptions 

are called the model for the sequence. In this case, the 

model for the sequence is 

1 n n nx x r  

Where nx  is the nth element of the original sequence 

and nr  is the nth element of the residual sequence. This 

model is called a static model because its parameters do 

not change with n. A model whose parameters change 

or adapt with n to the changing characteristics of the 

data is called an adaptive model. 

 

Basically, we see that knowing something 

about the structure of the data can help to “reduce the 

entropy.” We have put “reduce the entropy” in quotes 

because the entropy of the source is a measure of the 

amount of information generated by the source. As long 

as the information generated by the source is preserved 

(in whatever representation), the entropy remains the 

same. What we are reducing is our estimate of the 

entropy. The “actual” structure of the data in practice is 

generally unknowable, but anything we can learn about 

the data can help us to estimate the actual source 

entropy. Theoretically, as seen in Equation (2), we 

accomplish this in our definition of the entropy by 

picking larger and larger blocks of data to calculate the 

probability over, letting the size of the block go to 

infinity. 

 

III. MARKOV MODEL 
One of the most popular ways of representing 

dependence in the data is through the use of Markov 

models, named after the Russian mathematician Andrey 

Andreyevich Markov (1856 - 1922). For models used in 

lossless compression, we use a specific type of Markov 

process called a discrete time Markov chain.  

 

Definition 3.1. Let  nx  be a sequence of 

observations. This sequence is said to follow a kth-order 

Markov model if 

1 1( ,..., ) ( ,..., ,...) (5)   n n n k n n n kP x x x P x x x

 

 

In other words, knowledge of the past k 

symbols is equivalent to the knowledge of the entire 

past history of the process. The values taken on by the 

set  1,...,n n kx x   are called the states of the 

process. If the size of the source alphabet is l, then the 

number of states is 
kl . The most commonly used 

Markov model is the first-order Markov model, for 

which 
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1 1 2 3( ) ( , , ,...). (6)   n n n n n nP x x P x x x x  

 

Equations (5) and (6) indicate the existence of 

dependence between samples. However, they do not 

describe the form of the dependence. We can develop 

different first-order Markov models depending on our 

assumption about the form of the dependence between 

samples. If we assumed that the dependence was 

introduced in a linear manner, we could view the data 

sequence as the output of a linear filter driven by white 

noise. The output of such a filter can be given by the 

difference equation 

1n n nx x    

Where n  is a white noise process. This model is often 

used when developing coding algorithms for speech and 

images.  

 

The use of the Markov model does not require 

the assumption of linearity. For example, consider a 

binary image. The image has only two types of pixels, 

white pixels and black pixels. We know that the 

appearance of a white pixel as the next observation 

depends, to some extent, on whether the current pixel is 

white or black. Therefore, we can model the pixel 

process as a discrete time Markov chain. Define two 

states wA  and bA  ( wA  would correspond to the case 

where the current pixel is a white pixel, and bA  

corresponds to the case where the current pixel is a 

black pixel). We define the transition probabilities 

( / )P w b  and ( / )P b w , and the probability of being 

in each state ( )wP A  and ( )bP A . The Markov model 

can then be represented by the state diagram shown in 

Figure 2.  

 

The entropy of a finite state process with states iA  is 

simply the average value of the entropy at each state: 

1

( ) ( ) (7)
M

i i

i

H P A H A


  

 

 
Figure 2: A two-state Markov model for binary images 

 

For our particular example of a binary image 

( ) ( / ) log ( / ) ( / ) log ( / )wH A P b w P b w P w w P w w  

 Where ( / ) 1 ( / ).P w w P b w   ( )bH S can be calculated in a similar manner. 

( ) ( / ) log ( / ) ( / ) log ( / )bH A P w b P w b P b b P b b    

 

To see the effect of modeling on the estimate of entropy, let us calculate the entropy for a binary image. First 

using a simple probability model and then using the finite state model described above. Let us assume the following 

values for the various probabilities: 

30 1
( ) ; ( )

31 31
w bP A P A   

( / ) 0.99; ( / ) 0.01; ( / ) 0.7; ( / ) 0.3P w w P b w P b b P w b     

 

Then the entropy using a probability model and the iid assumption is (using Equation (4)) 

( ) log ( )

( ) log ( ) ( ) log ( )

30 30 1 1
log log 0.206

31 31 31 31

i i

w w b b

H P A P A

P A P A P A P A

bits

 

  

   


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Now using the Markov model 

( ) ( / ) log ( / ) ( / ) log ( / )

0.3log0.3 0.7log0.7 0.881

bH A P w b P w b P b b P b b

bits

  

   
 

and  

( ) ( / ) log ( / ) ( / ) log ( / )

0.01log0.01 0.99 og0.99 0.081

wH A P b w P b w P w w P w w

l bits

  

   
 

which, using Equation (7), results in an entropy for the Markov model of: 

( ) ( )

( ) ( ) ( ) ( )

30 1
(0.081) (0.881)

31 31

0.107

i i

w w b b

H P A H A

P A H A P A H A

bits



 

 





 

about a half of the entropy obtained using the iid assumption. 

 

IV. CONCLUSION 
In this article, we took a rather brief visit to the 

basic definitions of information theory based on some 

mathematical results and some of the ways we can 

reduce entropy. However, the coverage in this paper 

will sufficient to take us through some further 

specializations, such as Coding, Arithmetic Coding, 

Dictionary Techniques, Context-Based Compression, 

Lossless Image Compression. The concepts introduced 

in this paper will allow us to estimate the number of bits 

we need to represent the output of a source given the 

probability model for the source, and this will use in the 

case when we describe different encryption algorithms, 

modeling. 
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