Saudi Journal of Business and Management Studies

Abbreviated Key Title: Saudi J Bus Manag Stud ISSN 2415-6663 (Print) | ISSN 2415-6671 (Online) Scholars Middle East Publishers, Dubai, United Arab Emirates Journal homepage: https://saudijournals.com/sjbms

Original Research Article

Overall Equipment Effectiveness Improvement on Cutting Machine by Minimizing Six Big Losses

Rosalendro Eddy Nugroho^{1*}, Syifa Khoirudin²

¹Lecturer of Master Manajemen, Mercu Buana University, Jakarta, Indonesia

DOI: <u>10.36348/sjbms.2020.v05i01.011</u> | **Received:** 20.01.2020 | **Accepted:** 27.01.2020 | **Published:** 29.01.2020

*Corresponding author: Rosalendro Eddy Nugroho

Abstract

This study aims to analyze the achievement of Overall Equipment Effectiveness on the cutting machine by minimizing the Six Big Losses that occur on the cutting machine. The research data are monthly data for the period January 2017 to June 2018. The sampling method used was purposive sampling. From a population of 18 carline areas with a total of 148 cutting machine units, 3 carline areas with the lowest OEE achievement as a sample. The analytical method used in the study is the analysis of OEE calculations and six big losses with a fishbone diagram analysis. The results showed the cause of the OEE value not yet achieved in the Toyota Bfree carline was the low Performance Efficiency results of 72.56% and the high Equipment Failure losses of 94.57%. In the Toyota Hiace carline is the low Performance Efficiency results of 69.25% and the high Equipment Failure losses of 88.70%. On the Toyota Vitz carline is the low availability of 76.81% and the high Equipment Failure losses of 87.01%. With suggestions for improvements given to increase the value of OEE companies based on factors Man, Machine, Method, Material, and Environment.

Keywords: Cutting Machines, Fishbone Diagrams, Overall Equipment Effectiveness, Six Big Losses.

Copyright @ **2020:** This is an open-access article distributed under the terms of the Creative Commons Attribution license which permits unrestricted use, distribution, and reproduction in any medium for non-commercial use (NonCommercial, or CC-BY-NC) provided the original author and source are credited.

Introduction

The industrial sector has always tried to minimize their operational cost and maximize their asset usage. The efficiency of production and industrial effectivity depends on the effectivity of tools that are being used. In short, Overall Equipment Effectiveness (OEE) is basically seen to calculate performance efficiency [1].

In order to determine what causes the result of the below standard OEE score, we will use the Six Big Losses calculation. Six Big Losses are six points that decrease the effectivity of a standard machine that must be avoided by a company [2]. XYZ manufacture company was established in 1989 at Indonesia. XYZ Manufacture Company occupied the automotive manufacture sector that produced vehicle components, especially wiring harness for cars. There are a few steps in every production, such as pre assy, final assy, inspection, and finish goods. Cutting machines holds an important part in the production process. Cutting machines must produce wire with cutting length and quality which suited the standard quality that the company prescribed. Below is the OEE data of cutting machines between the period of 2017 and January – June 2018:

²Student of Master Manajemen, Mercu Buana University, Jakarta, Indonesia

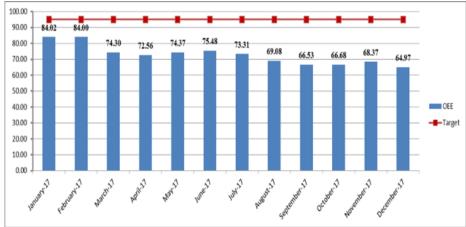


Fig-1: XYZ Manufacture Company's cutting machine OEE scores in 2017 Source: Maintenance Department (2017)

Fig-2: XYZ Manufacture Company's cutting machine OEE scores in January-June 2018 Source: Maintenance Department (2018)

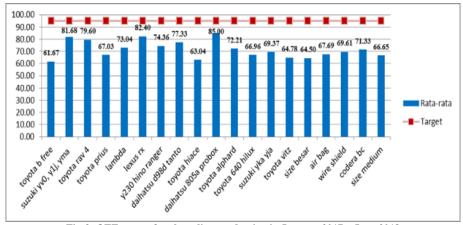


Fig-3: OEE score of each carline production in January 2017 – June 2018

OEE score achievement per carline in January 2017 – June 2018 shows the lowest 3 OEE score achievement on cutting machine are carline Toyota B Free with 61,67%, carline Toyota Hiace with 63,04%, and carline Toyota Vitz with 64,78%.

REVIEW OF LITERATURE

Total Productive Maintenance (TPM) is a management principle to increase the productivity and production efficiency of a company by effectively using machines [3]. The concept of Total Productive Maintenance is used to maintain the best equipment to avoid unexpected damage, speed loss, and quality defects [4].

Overall Equipment Effectiveness (OEE) is really valuable for accounting and identifying the sources of deficiency in a production. OEE is also very crucial for performance optimization of the current capacity, halt a big investment, decrease overtime expenses, variability reduction process, operator performance improvement, and reduce changeover time [5]. In Eng and Choi's research, [6] concluded that OEE is an important metric that provides information about the root causes of lost time and production. OEE is also a tool that can help a company to optimize performance without large investments.

According to Nakajima Vice Chairman of the Japan Institute of Plant Mintenance in the research Nurfaizah, et al. [7] The Six Big Losses are six major losses incurred, which are part of TPM's actions to eliminate these six losses. The six major losses can be calculated in OEE calculations. According to Nakajima in the study of Alvira et al. [2] activities and actions undertaken not only focus on preventing damage to the machine / equipment and minimizing machine / equipment downtime.

Fishbone Diagram (also known as Ishikawa Diagram or Cause-and-Effect Diagram) is a graphic technique to show the causes of some events or phenomena. Specifically, fish bone diagrams (shaped similar to fish skeletons) are a tool commonly used for cause and effect analysis to identify complex interactions from the cause of a particular problem or event [8].

RESEARCH METHODOLOGY

In this research, the writer uses a quantitative research method in a form of a case study where the research was done by using data and information from a

problem to come up with thorough comprehension that will be used to solve the current problem. On the other hand, the descriptive model will be used as the research design. Descriptive design is used to describe the result of processing and analyzing each of the variables in the research.

Population and Sample

The population in this research is the whole cutting machine on every carline of PT. EDS Manufacturing Indonesia in a total of 18 carline areas which consist of 148 units of cutting machines. Samples in this research are the three lowest carlines area in the OEE score, which are: carline Toyota B Free, carline Toyota Hiace, and carline Toyota Vitz.

Collecting Data Method

Data collection methods used in this study are combining two methods, there are primary data collection methods and secondary data.

Primary data is data obtained from its main source by conducting field studies directly to companies or observatives. Data needed to help the analysis process using fishbone diagrams, interviewing operators who operate machines related to man factors and methods, as well as making observations to companies related to machine, materials, and environment factors.

Secondary data is data in the form of company documentation, which is related to maintenance report data, engineering reports related to cutting machines, as well as relevant studies in writing this thesis, as for the study sources such as journals, books, and others.

Data Analysis Method

OEE Score Achievement Analysis:

To acquire the OEE score we must apply the calculation below: OEE = Availability × Performance × Quality (4) Six Big Losses Score Achievement Analysis

The loss that can cause a decrease in the effectiveness value is known as the six big losses. The six big losses are as follows: [10]

```
Equipment failure (Losses because of inoperable tools)
= \frac{Total\ Breakdown\ Time}{Loading\ Time} \times 100\% (5)
Set-up and adjustment (Losses because of installation and adjustment)
```

```
= \frac{\text{Total Set Up and Adjustment Time}}{\text{Loading Time}} \times 100\% (6)
```

Idling and minor stoppages (Losses because of idling on production or minor stoppage)

$$= \frac{\text{Non Productive Time at Set Up and Adjustment Time}}{\text{Loading Time}} \times 100\% (7)$$

Reduced speed (Losses because of the decreasing of speed)

$$= \frac{Operating Time - (Theoritical Cycle Time \times Processed Amount)}{Loading Time} \times 100\% (8)$$

Process defect (Losses because of defect product and/or because reprocess work of the product)

$$= \frac{\text{Theoritical Cycle Time} \times \text{Rework}}{\text{Loading Time}} \times 100\% (9)$$

Reduced yield losses (Losses because of early production process until achieving stable product)

 $= \frac{\text{Theoritical Cycle Time} \times \text{Scrap}}{\text{Loading Time}} \times 100\% (10)$

RESULTS AND DISCUSSION

To get the result from the research, calculation on the 3 carlines with the lowest OEE score, which are carline Toyota B Free, carline Toyota Hiace, and carline Toyota Vitz, must be done. Each of the carlines was calculated by looking at the OEE variables. Then, the factor with the lowest percentage is held as a focus to analyze the cause of the low score achievement of OEE on the cutting machine. Next, calculate the variables of the Six Big Losses. After that, the factor with the highest percentage becomes the focus to analyze the cause of the low score achievement of OEE on the cutting machine. Lastly, the result of the analysis of the

OEE and Six Big Losses are calculated with the Fishbone diagram.

OEE Calculation Results

OEE calculation of the cutting machine was done on the period of January 2017 – June 2017. The calculation based on 3 OEE variables, which are Availability, Performance Efficiency, and Quality Rate, was dealt with the formula that has been mentioned in the data analysis method. Here are the calculation results of the OEE variable for carline Toyota B Free, Toyota Hiace, and Toyota Vitz on the period of January 2017 – June 2018:

Table-1: OEE Result Carline Toyota BFree

	Table-1: OEE Result Carmie Toyota Briee							
No	Month	Availability	Performance Efficiency	Quality Rate	OEE			
1	Jan 17	91.20%	83.91%	100%	76.52%			
2	Feb 17	88.48%	85.94%	100%	76.05%			
3	Mar 17	94.68%	84.57%	100%	80.07%			
4	Apr 17	92.73%	91.39%	100%	84.75%			
5	May 17	87.18%	88.12%	100%	76.82%			
6	Jun 17	90.14%	76.80%	100%	69.23%			
7	Jul 17	83.87%	65.81%	100%	55.20%			
8	Aug 17	86.20%	72.62%	100%	62.59%			
9	Sep 17	78.45%	74.31%	100%	58.29%			
10	Okt 17	76.69%	67.96%	100%	52.12%			
11	Nov 17	74.31%	69.24%	100%	51.45%			
12	Dec 17	81.21%	61.12%	100%	49.64%			
13	Jan 18	76.64%	64.98%	100%	49.80%			
14	Feb 18	81.11%	70.70%	100%	57.34%			
15	Mar 18	88.46%	70.39%	100%	62.27%			
16	Apr 18	86.36%	65.19%	100%	56.30%			
17	May 18	81.04%	59.71%	100%	48.39%			
18	Jun 18	81.01%	53.39%	100%	43.25%			
Ave	rage	84.43%	72.56%	100%	61.67%			

Source: Self elaborated

Table-2: OEE Result Carline Toyota Hiace

No	Month	Availability	Performance Efficiency	Quality Rate	OEE
1	Jan 17	89%	69.88%	100%	62.52%
2	Feb 17	92%	73.04%	100%	67.30%
3	Mar 17	92%	72.12%	100%	66.41%
4	Apr 17	94%	69.92%	100%	65.40%
5	May 17	92%	73.71%	100%	67.47%
6	Jun 17	92%	74.56%	100%	68.74%
7	Jul 17	89%	66.53%	100%	59.47%
8	Aug 17	75%	58.97%	100%	44.31%
9	Sep 17	87%	63.87%	100%	55.48%
10	Okt 17	87%	62.40%	100%	54.36%
11	Nov 17	88%	57.52%	100%	50.62%
12	Dec 17	89%	62.99%	100%	55.87%
13	Jan 18	87%	68.47%	100%	59.68%
14	Feb 18	83%	69.77%	100%	58.05%
15	Mar 18	93%	77.22%	100%	71.83%
16	Apr 18	92%	79.39%	100%	73.06%
17	May 18	86%	72.80%	100%	62.52%
18	Jun 18	89%	73.33%	100%	65.21%
Avei	rage	89%	69.25%	100%	61.57%

Table-3: OEE Result Carline Toyota Vitz

No	Month	Availability	Performance Efficiency	Quality Rate	OEE
1	Jan 17	82.72%	96.49%	100%	79.82%
2	Feb 17	78.81%	96.39%	100%	75.97%
3	Mar 17	78.72%	90.86%	100%	71.53%
4	Apr 17	92.29%	83.56%	100%	77.12%
5	May 17	71.04%	88.31%	100%	62.73%
6	Jun 17	70.03%	93.44%	100%	65.44%
7	Jul 17	81.00%	90.62%	100%	73.40%
8	Aug 17	87.83%	88.14%	100%	77.41%
9	Sep 17	68.59%	76.79%	100%	52.67%
10	Okt 17	76.47%	80.15%	100%	61.29%
11	Nov 17	75.44%	77.11%	100%	58.18%
12	Dec 17	78.75%	73.60%	100%	57.96%
13	Jan 18	75.46%	84.27%	100%	63.60%
14	Feb 18	71.09%	98.58%	100%	70.08%
15	Mar 18	76.85%	80.20%	100%	61.64%
16	Apr 18	66.71%	76.60%	100%	51.10%
17	May 18	80.29%	73.58%	100%	59.08%
18	Jun 18	70.48%	71.34%	100%	50.28%
Aver	age	76.81%	84.45%	100%	64.96%

Source: Self elaborated

According to the results, the OEE score on the cutting machine of the three carlines has not met the standard of those that the company had set up, which is 95%. By looking at the result, a more thorough analysis should be done to find a solution to fix the OEE score

achievement of the company. Based on the result of the OEE calculations above, in order to find the source of the problem for the low achievement on the OEE score on the three carlines, Pareto diagram was used such as below:

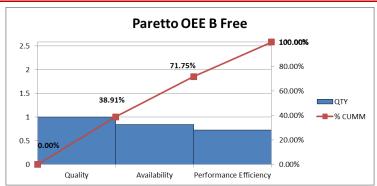


Fig-4: Diagram of OEE Toyota Bfree's Paretto Calculation

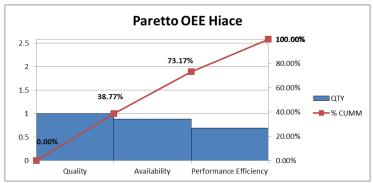


Fig-5: Diagram of OEE Toyota Hiace's Paretto Calculation

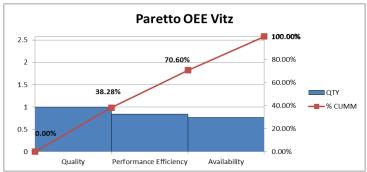


Fig-6: Diagram of OEE Toyota Vitz's Paretto Calculation

Through the Paretto diagram, we found that the lowest score from the OEE calculation on carline Toyota B Free and Toyota Hiace are the scores from Performance Efficiency. On the other hand, the carline Toyota Vitz score is from the Availability. Next, the lowest achievement is set as a focus to fix the OEE score achievement on the three carlines through analyzing the scores with the Fishbone diagram and give the solution to fix the OEE score achievement on carline B Free that is applicable for the company.

Six Big Losses Calculation Results

The Six Big Losses calculation on the cutting machine was done on the period of January 2017 – June 2017. The calculation was based on six variables of Six Big Losses, which are Equipment Failure, Reduced Speed, Set Up & Adjustment, Idling Minor & Stoppage, Process Defect, Reduced Yield Losses, by using the formula mentioned on analysis data method. Below are the calculation results on Six Big Losses variables on carline Toyota B Free, Toyota Hiace, and Toyota Vitz on the period of January 2017 – June 2018:

Table-4: Six Big Losses Result Carline Toyota Bfree

No	Six Big Losess	Percentage (%)	Cummulative Percentage (%)			
1	Equipment Failure	70.70%	70.70%			
2	Set Up & Adjustment	17.04%	87.74%			
3	Idling Minor & Stoppages	10.39%	98.13%			
4	Reduced Speed	1.87%	100.00%			
5	Process Defect	0.00%	100.00%			
6	Reduced Yield Losess	0.00%	100.00%			

Source: Self elaborated

Table-5: Six Big Losses Result Carline Toyota Hiace

No	Six Big Losess	Percentage (%)	Cummulative Percentage (%)
1	Equipment Failure	63.18%	63.18%
2	Set Up & Adjustment	19.30%	82.48%
3	Idling Minor & Stoppages	13.60%	96.08%
4	Reduced Speed	3.92%	100.00%
5	Process Defect	0.00%	100.00%
6	Reduced Yield Losess	0.00%	100.00%

Source: Self elaborated

Table-6: Six Big Losses Result Carline Toyota Vitz

No	Six Big Losess	Percentage (%)	Cummulative Percentage (%)
1	Equipment Failure	80.86%	80.86%
2	Set Up & Adjustment	10.97%	91.82%
3	Idling Minor & Stoppages	7.53%	99.35%
4	Reduced Speed	0.65%	100.00%
5	Process Defect	0.00%	100.00%
6	Reduced Yield Losess	0.00%	100.00%

Source: Self elaborated

From the Six Big Losses calculation above, the losses that were found on the three carlines can be analyzed to fix the main problem to minimize the losses

that happened. As to how to find the main problem on the low achievement on the OEE score on the three carlines, Paretto Diagram was used such as below:

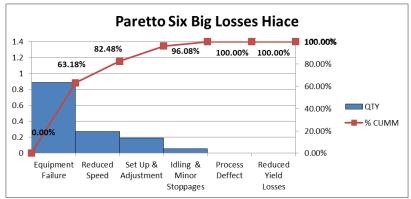


Fig-7: Diagram of Six Big Losses Toyota Bfree's Paretto Calculation

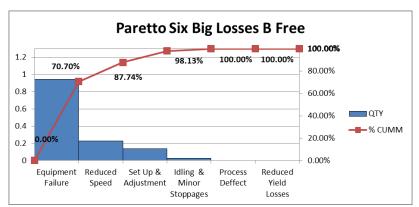


Fig-8: Diagram of Six Big Losses Toyota Hiace's Paretto Calculation

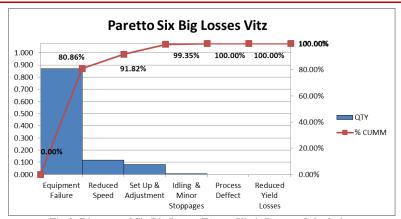


Fig-9: Diagram of Six Big Losses Toyota Vitz's Paretto Calculation

Through the *Paretto* Diagram, we found that the lowest score on the Six Big Losses calculation on the three *carlines* is the score of Equipment Failure. Next, those scores are held as a focus to fix the OEE score achievement on the three carlines by analyze it using the *Fishbone* Diagram and then finding the solution to fix the OEE score achievement of *carline* Toyota B Free which is applicable for the company.

Cause – Effect Diagram (Fishbone Diagram) OEE calculation result

According to Paretto Diagram, the result of the Overall Equipment Effectiveness calculation can figure out the main problem from the three carline. The lowest result from the OEE calculations becomes the main focus on the problem and analysed further with Fishbone Diagram method such as below:

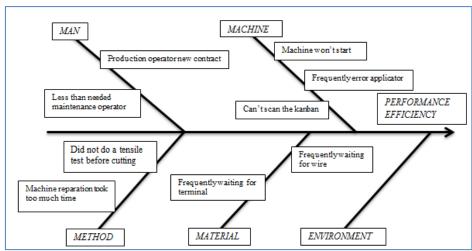


Fig-10: Fishbone Diagram Performance Efficiency Carline Toyota Bfree

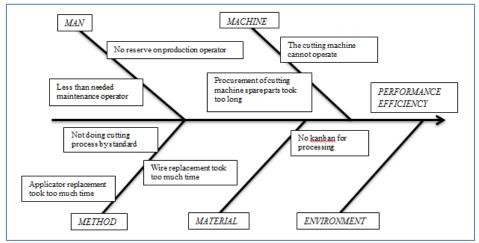


Fig-11: Fishbone Diagram Performance Efficiency Carline Toyota Hiace

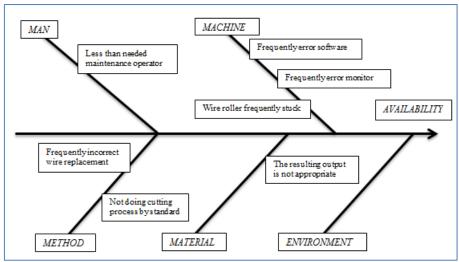


Fig-12: Fishbone Diagram Performance Efficiency Carline Toyota Vitz

Cause – Effect Diagram (Fishbone Diagram) calculation result of Six Big Losses

According to Paretto Diagram, the result of the Six Big Losses calculation can figure out the main

problem from the three carlines. The lowest result from the Six Big Losses calculations becomes the main focus on the problem and analysed further with Fishbone Diagram method such as below:

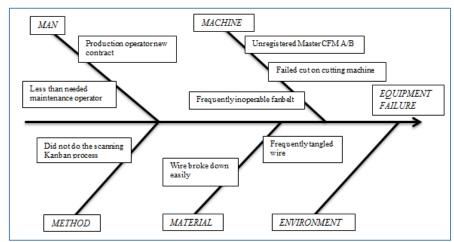


Fig-13: Fishbone Diagram Equipment Failure Carline Toyota Bfree

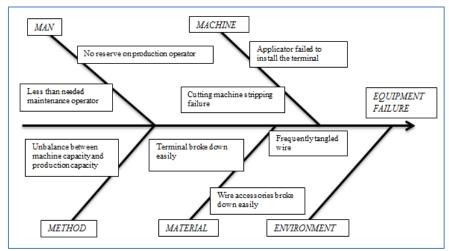


Fig-14: Fishbone Diagram Equipment Failure Carline Toyota Hiace

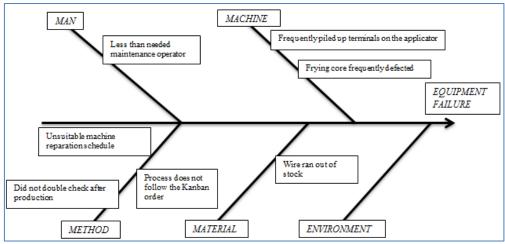


Fig-15: Fishbone Diagram Equipment Failure Carline Toyota Vitz

Problem Solving

The solution for this problem can be found by doing an extensive analysis on the main problem using

the Fishbone Diagram with why – why analysis method until we found the suitable solution to do an accurate restoration such as the table below:

Table-7: Solution of Oee and Six Big Losses Problems Carline Toyota BFree

	Tuble 7. Bolullo	<u> </u>	nent Effectiveness	Сагине Тоуоца БЕГее
Man	Why 1	Why 2	Why 3	Corrective Solution
Production	Previous	The company did		The company must cautiously register the
operator new	operator's	not being cautious		operator's contract term so that it will not
contract	contract expired	about the operator's		clash against the new contact
T 41	at the same time	contract term		Maintanana
Less than needed	1 maintenance operator per 3	The company's efficiency policy		Maintenance operator procurement must be suited for the chances of machine
maintenance	carlines	efficiency policy		breaking down
operator	carmics			bleaking down
Machine	Why 1	Why 2	Why 3	Corrective Solution
The machine	Machine	Lack of annual	Annual machine	Create a schedule on annual machine
will not start	operation failure	machine checking	checking not	checking on the cutting machine
			operating	
			optimally	
Frequently	Terminal not	Damage on dice		Register the maximum use of the dice so
error applicator	connected to the	applicator		that it will not break down before it is
G .	circuit	TZ 1 1 1 1 1	DDIG	replaced
Cannot scan the kanban	New Kanban is not recorded yet	Kanban is outdated	PPIC Department has	Teamwork and communication must be increased to avoid outdated kanban
the Kanban	not recorded yet		not informed the	increased to avoid outdated kanban
			Production	
			Department	
			about the new	
			kanban	
	Barcode scanner	Barcode scanner		Replacement for the broken barcode
	cannot scan the	breaks		scanner
	kanban			
Method	Why 1	Why 2	Why 3	Corrective Solution
Did not do a tensile test	Operator lack the	Lack of information about		Socialization about the importance of
before cutting	knowledge about tensile test	the importance of		tensile test to the operator in training
process	tensile test	tensile test		
Machine	Lack of	tensiie test		Adjusting the amount of maintenance
reparation took	maintenance			operator to the <i>carlines</i>
too long	operator			
	Lack of	Insufficiency		Training/retraining the maintenance
	understanding of	training/retraining		operator on the cutting machine
	machine damages	time for the operator		intensively

Material	Why 1	Why 2	Why 3	Corrective Solution
Frequently	Did not update	Did not monitor the	vvily 3	The company must monitor and register
waiting for the	the wire stock	wire stock		the stock of wire to ask for new stock
wire wire	the whe stock	periodically		before the wire runs out
Frequently	Deliver the wrong	Did not see the		The company must be thorough before
waiting for the	type of terminal	terminal code		delivering the terminal
terminal	type of terminar	before delivery		denvering the terminar
Environment	Why 1	Why 2	Why 3	Corrective Solution
		re is not a factor that af		
Tyo need for imp			ig Losses	
Man	Why 1	Why 2	Why 3	Corrective Solution
Production	Previous	The company did		The company must cautiously register the
Operator new	operator's	not being cautious		operator's contract term so that it will not
contract	contract expired	about operator's		clash against the new contact
	at the same time	contract term		
Less than	1 maintenance	Company's		Maintenance operator procurement must
needed	operator per 3	efficiency policy		be suited for the chances of machine
maintenance	carlines			breaking down
operator				
Machine	Why 1	Why 2	Why 3	Corrective Solution
Unregistered	Outdated on the	Unregistered		The company must update on the new
Master CFM	new type of	Master CFM A/B		type of defect on the Master CFM A/B
A/B	defect	program by the		
		maintenance		
		operator	**	
Failed cut on	Inoperable blade	Blade is already on	Unregistered	The company must register the maximum
the cutting	on the cutting	the maximum	maximum usage	usage of the blade to find a replacement
machine	machine	usage capacity	of the blade on	before the blade reaches the maximum
Enganometry	Forbalt atuals	Lack of lubrication	cutting machine	usage capacity
Frequently inoperable	Fanbelt stuck	Lack of fubrication		The company must regularly check the fanbelt physically
fanbelt				Tanbeit physically
Method	Why 1	Why 2	Why 3	Corrective Solution
The cutting	Did not do the	The operator wants	Wily 3	Supervising by the line leader and
process did not	cutting process by	to do the cutting		retraining of the importance on the
scan the	the standard	process quicker		scanning of the importance on the
kanban	Starioura	process quienci		process
Material	Why 1	Why 2	Why 3	Corrective Solution
Frequently	A lot of small and	Consumer		Specific handling on the long and small
tangled wire	long wire	specification		wire, starts with the rolling the wire to the
<i>G</i> =	dimension	1		distribution
	The rolling	The rolling process		The rolling process to the bobbin wire
	process from the	was rash		must be done carefully and precisely
ı e	big roll to the			
	big roll to the bobbin is not			
Wire broke	bobbin is not	Consumer		The company must ask the consumer
Wire broke down easily	bobbin is not well-kept	Consumer specification and		The company must ask the consumer does changing the wire is necessary or
	bobbin is not well-kept Thin protective			
down easily	bobbin is not well-kept Thin protective skin on the wire	specification and the distributor's quality		does changing the wire is necessary or not, if not, specific handling is required on the easily broke down wire
down easily Environment	bobbin is not well-kept Thin protective skin on the wire Why 1	specification and the distributor's	Why 3	does changing the wire is necessary or not, if not, specific handling is required on the easily broke down wire Corrective Solution

Table-8: Solution of Oee and Six Big Losses Problems Carline Toyota Hiace

Table-8: Solution of Oee and Six Big Losses Problems Carline Toyota Hiace					
		Overall Equipmen		T	
Man	Why 1	Why 2	Why 3	Corrective Solution	
No reserve on	A lot of operator	The company's policy		The company must regulate on the	
the production	does not come up at	on leave permission		policy of leave permission and	
operator	the same time	and furlough		furlough	
Less than needed	1 maintenance	Company's efficiency		Maintenance operator procurement	
maintenance	operator per 3	policy		must be suited for the chances of	
operator	carlines			machine breaking down	
Machine	Why 1	Why 2	Why 3	Corrective Solution	
The cutting	Frequent error on	Lack of annual	Production operator and	Socialization to production	
machine cannot	machine operation	machine checking	maintenance operator	operator and maintenance operator	
operate	•		are careless about	to start paying attention to the	
•			cutting machines	cutting machine condition and	
			condition	regularly check on the cutting	
				machine	
Spare part	Spare part ran out of	Machine spare parts		The company must register all the	
replacement took	stock	were not registered		spare parts needed by the cutting	
too much time	******			machine	
	Spare part delivery	Spare parts were		The company must order the spare	
	took too long	imported from Japan		part according to the necessity and	
	took too long	imported from supun		must be done before replacement	
Method	Why 1	Why 2	Why 3	Corrective Solution	
Cutting process	Work was done by a	The operator wants to	Meeting the target of	In the training process, there must	
does not follow	recitation	do the cutting process	cutting output	be socialization about the	
the standard	recitation	quicker	cutting output	importance of procedure and fit	
procedure		quicker		quality and quantity	
Wire	Wires were not	MPC Operator did not		Line Leader must supervise and	
replacement took	placed on the	do a thorough job on		guide the storing process to ensure	
too much time	corresponding	storing the wire		wires were stored appropriately	
too much time	storage	storing the wife		whes were stored appropriately	
Applicator	Applicators were not	Production Operator		Line Leader must supervise and	
replacement took	placed on the	did not do a thorough		guide the storing process to ensure	
too much time		job on storing the			
too much time	corresponding	applicators after use		applicators were stored appropriately after use	
Material	storage Why 1	Why 2	Why 3	Corrective Solution	
No kanban to	A lot of kanbans are	Slip inside the circuit	Lack of supervising and	The company must supervise and	
		store or stolen	registering the actual		
process	missing	store of storen		register the actual quantity of kanban	
	Navy tyma of magaza	PPIC lateness on	quantity of kanban PPIC did not	PPIC must communicate if there is	
	New type of process		communicate with		
	kanban	delivering kanban		a change in process kanban	
			Production about the		
Г ' ' '	3371 1	VVI 2	kanban change	G (G1 (
Environtment	Why 1	Why 2	Why 3	Corrective Solution	
No need for improv	vement because there is	not a factor that affects the			
Mon	When 1	Six Big L		Corrective Solution	
Man	Why 1	Why 2	Why 3		
No reserve on	A lot of operator	The company's policy		The company must regulate on the	
the production	does not come up at	on leave permission		policy of leave permission and	
operator	the same time	and furlough		furlough	
Less than needed	1 maintenance	Company's efficiency		Maintenance operator procurement	
maintenance	operator per 3	policy		must be suited for the chances of	
operator	carlines	XXII 2	XXII 2	machine breaking down	
Machine	Why 1	Why 2	Why 3	Corrective Solution	
Applicator failed	Dice on the	Dice has reached	Not communicating	The company should replace the	
to install the	applicator not	maximum usage	about dice applicator	dice applicator before it reached	
terminal	working properly		replacement before the	the maximum usage capacity	
			dice reached maximum		
		A 1'	usage capacity		
	Damage on the	Applicator usage		The company should apply specific	
	applicator	capacity		handling to prolong the usage of	
				the applicator. If it already reached	
				its' maximum usage capacity, the	
				1 111 4	
				company should buy the	
				replacement immediately	

Cutting machine stripping failure	Cutting machine stripping blade now working properly	Stripping blade already reached its' maximum usage capacity	Registering censor on cutting machine stripping blade not functioning	The company should replace the registering censor in cutting machine stripping blade so replacement would happen before it reached maximum usage
Method	Why 1	Why 2	Why 3	Corrective Solution
Unbalance between machine capacity and production capacity	Increasing cutting output target on the machine	Increased kanban quantity	Consumer order increased	Changing the method on the kanban quantity with increasing the amount of kanbans that are circulating
Material	Why 1	Why 2	Why 3	Corrective Solution
Frequently tangled wire	A lot of small and long wire dimension Rolling process	Consumer specification The rolling process		Specific handling on the long and small wire, starts with the rolling the wire to the distribution The rolling process to the bobbin
	from the big roll to the bobbin is not well-kept	was rash		wire must be done carefully and precisely
Terminal broke down easily	Frequently banned up/down on the circuit terminal	Circuit leveling process after cutting process was not done on the provided space		On training, the company should socialize about doing the circuit leveling process on the provided space
Wire accessories broke down easily	Circuit rubber seal is thin and easily tear off	Consumer specification		Circuit rubber seal installation process should be done separately from the cutting machine for the easily broke down rubber seal
Environment	Why 1	Why 2	Why 3	Corrective Solution
No need for impro	vement because there is	not a factor that affects the		

Table-9: Solution of Oee and Six Big Losses Problems Carline Toyota Vitz

		Overall Equipme	ent Effectiveness	v
Man	Why 1	Why 2	Why 3	Corrective Solution
Less than needed maintenance operator	1 maintenance operator per 3 carlines	Company's efficiency policy		Maintenance operator procurement must be suited for the chances of machine breaking down
Machine	Why 1	Why 2	Why 3	Corrective Solution
Frequently error software	Cutting machine software is unrecognized when operated	Software got virus		Prevention should be done by doing a check-up regularly and installing antivirus on the software
Frequently error monitor	Monitor turns off by itself frequently when operating the cutting machine	Monitor is worn out		Replacing monitor that has been worn out
Wire roller frequently stuck	Wire not working properly when processing	Roller insert surface is sluggish	Lack of lubrication on roller insert wire	Cutting operator must lubricate the roller insert wire periodically
Method	Why 1	Why 2	Why 3	Corrective Solution
Frequently incorrect wire replacement	Cutting operator use the wrong wire type	Wires were not stored in the corresponding wire storage	Wires were wrongly stored in the distribution process	Wire storing process must follow the corresponding storage instead of placing it with the same color
Not doing cutting process by standard	Work was done by a recitation	The operator wants to do the cutting process quicker	Meeting the target of cutting output	In the training process, there must be socialization about the importance of procedure and a fit quality and quantity

Material	Why 1	Why 2	Why 3	Corrective Solution
The resulting	Kanbans were	Lack of kanban to	Kanban updates	The company must adjust the
output is not	uneven with the	process	were late	amount of Kanbans in production
appropriate	expected output	process	were fate	with the expected output
Environtment	Why 1	Why 2	Why 3	Corrective Solution
	ovement because there	,	· · ·	
No need for impro	overnent because there	Six Big		•
Man	Why 1	Why 2	Why 3	Corrective Solution
Less than	1 maintenance	Company's	, , iij 3	Maintenance operator procurement
needed	operator per 3	efficiency policy		must be suited for the chances of
maintenance	carlines	carry		machine breaking down
operator				g
Machine	Why 1	Why 2	Why 3	Corrective Solution
Frequently piled	There was a	Use the wrong	Did not pay	Operator must pay attention to the
up terminals on	mistake when	type of terminal	attention to the	terminal's code when picking up
the applicator	setting the		terminal's code in	the terminal to use with suitable
	terminal in the		use	applicator
	applicator	Terminals were	The setting was	The operator must set the terminal
		not set correctly	done in a rash	thoroughly and as the procedure
	Broken applicator	Applicators were		The company must prevent it by
		not checked		taking care of the applicator
		regularly and		regularly and make a replacement
		were not taken		when it breaks
		care of		
Frying core	Defect passed	Defect was not	Master CFM A/B	Prevention by checking the Master
frequently	through after the	seen by Master	error or broken	CFM A/B regularly and make
defected	cutting process	CFM A/B	XXII - 2	reparation if it breaks
Method	Why 1	Why 2	Why 3	Corrective Solution
Machine	Maintenance	Reparation schedule clash	Maintenance	Machine reparation schedule should not clash with other carlines
reparation	operator did not repair the	with other	operator are limited	and adjustment should be made
scheduling does not suit the	machine on	carlines	minted	with the maintenance operator
schedule	schedule	carmies		available
Process did not	Process was done	Operator	Cutting process	Maintenance operator should lock
follow the	manually and did	accessing the	with the same	the cutting program so the work
kanban	not follow the	cutting program	type of wire was	order will not be altered by the
Kunoun	program	without	done	cutting operator and supervised by
	program	permission	simultaneously	the line leader
Did not double-	Consider the	Rushing to the		Supervising by line leader so
check after	cutting output	next process		ensure operator double-check after
production	was already as			every cutting process
_	standard			
Material	Why 1	Why 2	Why 3	Corrective Solution
Wire ran out of	Wires delivery to	Wire is not	The required wire	Wire resupply must be suited for
stock	the production	available on the	was used on	each carline
	was late	wire store	another carline	
			Wire supply	The company must register the wire
			delivery was late	stock thoroughly and reorder before
			to restock	it ran out of stock
Environment	Why 1	Why 2	Why 3	Corrective Solution
No need for impro	vement because there	e is not a factor that a	ffects the OEE score	

CONCLUSSIONS

The conclusions that can be drawn from this study are:

1. The dominant factor for the low achievement of the OEE score on carline Toyoto Bfree is the Performance Efficiency of 72.56%. The dominant

factor for the low achievement of the OEE score on carline Toyota Hiace is the Performance Efficiency of 69.25. The dominant factor for the low achievement of the OEE score on carline Toyota Vitz is the Availability of 84.45%.

2. Based on the calculation of Six Big Losses on carline Toyota Bfree, carline Toyota Hiace, and carline Toyota Vitz the losses factor that frequently happened is the Equipment Failure.

Advice

- 1. The company need to consider about the worker recruitment system with a contract system, prepare the reserve operator for each carline to anticipate the absent of operator, also adjusting the amount of maintenance operator for carline production needs.
- 2. Do prevention on damaging the cutting machine by a precise scheduled machine handling and also take care of the machine accordingly with the schedule, do a repair on the machine accurately supported by maintenance operator's ability with spare part procurement so that spare part substitution will not slow down and damaging the cutting process.
- 3. Training and retraining system for the operators to understand and operate the job according to the procedure and company standard, better oversight by the line leader and supervisor, also make improvement to ease the operator's work process.
- A ripe production preparation, material distribution process according to the cutting needs, and good communication between department and consumer about the choice of material being used.

REFERENCES

- Nallusamy, S., & Majumdar, G. (2017). Improvement of Overall Effectiveness Equipment using Total Productive Maintenance in the Manufacturing Industry. *International Journal of Performability Teknik*, 13(2), 173–188.
- 2. Alvira, D. (2015). Proposed Improvement of Overall Equipment Effectiveness (OEE) on Manual Tapping Machines by Minimizing Six Big Losses. *Jurnal Online Institut Teknologi Nasional*, 03(03), 240–251.
- Subiyanto. (2014). Analysis of the Effectiveness of Sugar Machine Machinery/ Tools Using the Overall Equipments Effectiveness Method. *Jurnal*

- *Teknik Industri*, *16*(1), 41–50. https://doi.org/10.9744/jti.16.1.41-50.
- Kumar, T. V., Parthasarathi, M., Manojkumar, S., & Selvaprakash, S. (2016). Lean Six Sigma Approach to Improve Overall Equipment Effectiveness Performance: A Case Study in the Indian Small Manufacturing Firm. International Journal for Innovative Research in Multidisciplinary Field, 2(12), 122–129.
- Esmaeel. (2018). Understanding of Business Performance from the Perspective of Manufacturing Strategies: Fit Manufacturing and Overall Equipment Effectiveness. Procedia Manufacturing, 22, 998–1006. https://doi.org/10.1016/j.promfg.2018.03.142.
- 6. Eng, C. K., & Choi, N. K. (2016). Relationship between Overall Equipment Effectiveness, Throughput and Production Part Cost in Semiconductor Manufacturing Industry. *IEEE IEEM*, 75–79.
- 7. Nurfaizah, U., Adianto, R. H., & Prassetiyo, H. (2014). Design of Implementation of Total Productive Maintenance (TPM) in the Press Part II of PT. XYZ. *Jurnal Online Institut Teknologi Nasional*, 01(01), 340–353.
- 8. Coccia, M. (2017). The Fishbone Diagram to Identify, Systematize and Analyze The Sources of General Purpose Technologies. *Journal of Social and Administrative Sciences*, 4(4), 291–303. https://doi.org/10.1453/jsas.v4i4.1518.
- 9. Sagita, I. (2017). Performance Improvement of E5 Punching Machine and E150 Bending Production of Pix Panel Products with Overall Equipment Effectiveness (OEE) Method (Case Study of PT Schneider Indonesia-Pulogadung Plant).
- 10. Siddiq, M., Atmaji, F. T. D., & Alhilman, J. (2018). Proposed Implementation of Total Productive Maintenance (TPM) to Increase Machine Effectiveness by Using the Overall Equipment Effectiveness (OEE) method at PT Sanbe Farma Cimareme Unit III Large Volume Parenteral Plant. E-Proceeding of Engineering, 5(2), 2982–2990.