Scholars Bulletin

(A Multidisciplinary Bi-weekly Journal)

An Official Publication of "Scholars Middle East Publishers",

Dubai, United Arab Emirates

Website: http://scholarsbulletin.com/

ISSN 2412-9771 (Print) ISSN 2412-897X (Online)

On The Homogeneous Biquadratic Equation with Four Unknowns $x^4 + y^4 + z^4 = 32w^4$

M.A. Gopalan¹, S. Vidhyalakshmi², N. Thiruniraiselvi³

^{1,2}Professor, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India. ³Research Scholar, Department of Mathematics, SIGC, Trichy-620002, Tamilnadu, India.

*Corresponding Author:

M.A. Gopalan

Email: mayilgopalan@gmail.com

Abstract: The bi-quadratic equation with 4 unknowns given by $x^4 + y^4 + z^4 = 32w^4$ is analyzed for its patterns of non-zero distinct integral solutions. Six different patterns of integer solutions to the above bi-quadratic equation are presented. A few interesting relations between the solutions and special numbers, namely, polygonal number and pyramidal number are exhibited.

Keywords: Homogeneous bi-quadratic, bi-quadratic equation with four unknowns, integer solutions polygonal and pyramidal numbers.

MSC Subject classification: 11D41.

INTRODUCTION

There is a great interest for Mathematicians since ambiguity in homogeneous and non-homogeneous Biquadratic Diophantine Equations [1-3]. In this context, one may refer [4-18] for varieties of problems on the biquadratic Diophantine equations with three and four variables. In this paper, biquadratic equations with four variables given by

 $x^4 + y^4 + z^4 = 32w^4$ is analyzed for its non-zero distinct integer solutions. A few interesting relations between the solutions and special polygonal numbers, pyramidal numbers are exhibited.

NOTATIONS

 p_n^m :Pyramidal number of rank n with size m

 ${\it cp}_n^m$: Centered pyramidal number of rank n with size m

 So_n :Stella Octangular number of rank n

 G_n :Gnomonic number of rank n

 PR_n :Pronic number of rank n

METHOD OF ANALYSIS

The diophantine equation representing the biquadratic equation with four unknowns under consideration is given by

$$x^4 + y^4 + z^4 = 32w^4 \tag{1}$$

Note that (1) is satisfied by the following non-zero integer quadruples

(0,2,2,1), (6,0,6,3), (16,-6,10,7), (30,-16,14,13), (2,0,2,1), (16,-10,6,7), (42,-32,10,19), (80,-66,14,37)

However, we have other solutions for (1), which are illustrated below. Introducing the transformations

$$x = u + v; y = u - v; z = 2u$$
 (2)

in (1), it simplifies to

$$v^2 + 3u^2 = 4w^2 \tag{3}$$

Available Online: http://scholarsbulletin.com/

The above equations (3) is solved through different methods and thus, one obtains distinct patterns of integer solutions of (1)

PATTERN 1

Assume
$$w = w(a, b) = a^2 + 3b^2$$
 (4)

where a and b are non-zero distinct integers

Write 4 as
$$4 = (1 + i\sqrt{3})(1 - i\sqrt{3})$$
 (5)

Substituting (4) & (5) in (3) and using the method of factorization, define

$$v + i\sqrt{3}u = (1 + i\sqrt{3})(a + i\sqrt{3}b)^2$$

Equating real and imaginary parts, we have

$$v = a^2 - 3b^2 - 6ab$$

$$u = a^2 - 3b^2 + 2ab$$

Hence in view of (2) and (4), the non-zero distinct integral solutions of (1) are given by

$$x = x(a,b) = 2a^2 - 6b^2 - 4ab$$

$$y = y(a,b) = 8ab$$

$$z = z(a,b) = 2a^2 - 6b^2 + 4ab$$

$$w = w(a,b) = a^2 + 3b^2$$

A few interesting properties are presented below:

*)
$$x(a,b) - z(a,b) + y(a,b) = 0$$

*)
$$2w(a,1) + z(a,1) = 4PR_a$$

*)
$$z(a^2, a^2) + y(a^2, a^2) - x(a^2, a^2)$$
 is a bi-quadratic integer

*)
$$z(a, a^2 + 1) - x(a, a^2 + 1) = 16CP_a^3$$

*)
$$y(a,a) + z(a,a) + w(a,a) \equiv 0 \pmod{12}$$

*)
$$2[y(a,a) + w(a,a)]$$
 is a Nasty number

PATTERN 2

The ternary quadratic equation (3) can be written as

$$3u^2 = 4w^2 - v^2 \tag{6}$$

Factorizing (6), we get

$$(3u)(u) = (2w+v)(2w-v)$$

which is expressed in the form of ratio as

$$\frac{3u}{2w+v} = \frac{2w-v}{u} = \frac{\alpha}{\beta}, \beta \neq 0,$$

This is equivalent to the following two equations.

$$3\beta u - \alpha v - 2\alpha w = 0$$

$$-\alpha u - \beta v + 2\beta w = 0$$

Applying the method of cross multiplication, we get

$$u = -4\alpha\beta$$
$$v = 2\alpha^2 - 6\beta^2$$
$$w = -\alpha^2 - 3\beta^2$$

In view of (2), the corresponding non-zero distinct integer solutions of (1) are

$$x = x(\alpha, \beta) = 2\alpha^{2} - 4\alpha\beta - 6\beta^{2}$$

$$y = y(\alpha, \beta) = -2\alpha^{2} - 4\alpha\beta + 6\beta^{2}$$

$$z = z(\alpha, \beta) = -8\alpha\beta$$

$$w = w(\alpha, \beta) = -\alpha^{2} - 3\beta^{2}$$

Some interesting properties are as follows:

*)
$$2w(3\beta,\beta) - y(3\beta,\beta) = 0$$

*)
$$2w(a, a+1) - y(a, a+1) \equiv 0 \pmod{4}$$

*)
$$x(a,a+1) + y(a,a+1) - z(a,a+1) = 0$$

*)
$$x(a^2, a+1) + y(a^2, a+1) = -16P_a^5$$

*)
$$3[y(a,a)-z(a,a)]$$
 is a Nasty number

PATTERN-3:

Rewrite (3) as,
$$4w^2 - 3u^2 = v^2 * 1$$
 (7)

Write 1 as
$$1 = (2 + \sqrt{3})(2 - \sqrt{3})$$
 (8)

Assume
$$v = 4a^2 - 3b^2$$

Substituting (8) and (9) in (7) and using the method of factorization, we get

$$(2w + \sqrt{3}u) = (2a + \sqrt{3}b)^2(2 + \sqrt{3})$$

Equating rational and irrational parts, we get

$$w = 4a^2 + 3b^2 + 6ab$$

$$u = 4a^2 + 3b^2 + 8ab \tag{10}$$

Again substituting (9) and (10) in (2), we get

$$\mathbf{x} = x(a,b) = 8a^2 + 8ab$$

$$y = y(a,b) = 8ab + 6b^2$$

$$z = z(a,b) = 8a^2 + 6b^2 + 16ab$$

$$w = w(a,b) = 4a^2 + 3b^2 + 6ab$$

A few interesting properties are presented below:

*)
$$z(a(a+1),(a+2)) - 2w(a(a+1),(a+2)) = 24p_a^3$$

*)
$$13[w(a,a)-z(a,a)+x(a,a)+y(a,a)]$$
 is a perfect square

*)
$$z(a^2, a+1) + y(a^2, a+1) \equiv 0 \pmod{4}$$

*)
$$z(a^2, a+1) - 2w(a^2, a+1) = 8P_a^5$$

*)
$$y(a,1) + z(a,1) - w(a,1) = perfectsquare + 9Gn_a$$

*)
$$3[x(a,a)-y(a,a)]$$
 is a Nasty number

PATTERN-4:

Introducing the linear transformations
$$u = X + T, v = X - 3T$$
 (11)

in (3), it leads to
$$X^2 + 3T^2 = w^2$$
 which is satisfied by (12)

$$X = 3p^2 - q^2$$

$$T = 2 pq$$

$$w = 3p^2 + q^2$$

Substituting the above values in (11), we get

$$u = u(p,q) = 3p^2 - q^2 + 2pq$$

$$v = v(p,q) = 3p^2 - q^2 - 6pq$$

In view of (2), we have

$$x = x(p,q) = 6p^2 - 4pq - 2q^2$$

$$y = y(p,q) = 8pq$$

$$z = z(p,q) = 6p^2 + 4pq - 2q^2$$

$$w = w(p,q) = 3p^2 + q^2$$

A few interesting properties are presented below:

*)
$$z(a,2a^2-1)-x(a,2a^2-1)=8SO_a$$

*)
$$y(a,a)-(a,a)$$
 is a perfect square

*)
$$z(a^2, a+1) + y(a^2, a+1) - x(a^2, a+1) = 32p_a^5$$

*)
$$[108y(a^2, a^2) + w(a^2, a^2)]$$
 is a bi quadratic itneger

*)
$$x(a,a) - w(a,a) + z(a,a)$$
 is a Nasty number

PATTERN-5:

Rewrite (3) as
$$v^2 = 4w^2 - 3u^2$$
 (13)

Introducing the linear transformations
$$u = X + 4T, w = X + 3T$$
 (14)

Substituting (14) in (13), we get
$$X^2 = 12T^2 + v^2$$
 (15)

Following procedure presented in patteren-4, the corresponding integer values are as follows

$$x = x(p,q) = 24p^2 + 8pq$$

$$y = y(p,q) = 8pq + 2q^2$$

$$z = z(p,q) = 24p^2 + 16pq + 2q^2$$

$$w = w(p,q) = 12p^2 + q^2 + 6pq$$

PATTERN-6

It is worth to note that (15) can also be written as the system of double equations as follows:

System -1
 System - 2
 System - 3
 System - 4

$$X + v = T^2$$
 $X + v = 2T^2$
 $X + v = 6T^2$
 $X + v = 3T$
 $X - v = 12$
 $X - v = 6$
 $X - v = 2$
 $X - v = 4T$

Solving each of the above systems, the values of X,T,v are obtained. Using these values respectively in (14) and employing (2), one obtains the corresponding integer solutions to (1).

CONCLUSION

In this paper, we have presented infinitely many non-zero integral solutions for the non-homogeneous biquadratic equation with four unknowns $x^4 + y^4 + z^4 = 32w^4$. As biquadratic equations are rich in variety, one may consider the other forms of biquadratic equations with variables greater than or equal to 4 and search for their corresponding integer solutions.

ACKNOWLEDGEMENT

The financial support from the UGC, New Delhi (F.MRP-5122/14 (SERO/UGC) dated March 2014) for a part of this work is gratefully acknowledged.

REFERENCES

- 1. Carmichael, R., D. (1959). The theory of numbers and Diophantine Analysis, dover Publications, New York.
- 2. Dickson, L., E. (1952). History of Theory of Numbers, Vol. 11, Chelsea Publishing Company, New York.
- 3. Mordell L. J. (1969). Diophantine equations, Academic Press, London.
- 4. Gopalan, M., A., Anbuselvi, R. (2008). Integral solutions of ternary quadratic equations, $x^2 + y^2 = z^4$ ", *Acta ciencia Indica*, Vol XXXXIV M, No.1,297-300
- **5.** Gopalan, M., A., Manju somanathand Vanitha, N. (2007). Parametric integral solutions of $x^2 + y^3 = z^4$ ", *Acta ciencia Indica*, Vol XXXXIIIM, No.4,1261-1265
- **6.** Gopalan, M.,A., Vijayasankar, A., Somanath, M. (2008). Integral solutions of note on the Diophantine equation $x^2 y^2 = z^4$ ", *Impact J.Sci Tech*; Vol 2(4), 149-157
- 7. Gopalan M.A., and Janaki.G. ,2008 "Integral solutions of ternary quadratic equation $x^2 y^2 + xy = z^4$ ", *Impact journal* Vol 2(2), 71-76
- 8. Gopalan M.A., and Pandichelvi.R, Jan- Dec 2008 " On ternary quadratic Diophantine equation $x^2 + ky^3 = z^4$ ", Pacific Asian Journal of Mathematics, Vol 2, No.1-2,57-62
- 9. Gopalan M.A., and Vidhyalakshmi, S.Devibala, 2010 "Ternary quadratic Diophantine equations $2^{4n+3}(x^3-y^3)=z^4$ ", Impact journal of science and Technology, 4(1),57-60
- 10. Gopalan M.A., Vijayasankar. A and Manju somanath, ,2010" Integral solutions of note on the Diophantine equations $x^2 y^2 = z^4$ ", *Impact J.Sci Tech*; Vol 2(4), 149-157
- 11. Gopalan M.A., and Vidhyalakshmi, Thiruniraiselvi. N," On the bi quadratic equations with three unknowns $7(x^2 + y^2) 10xy = 220z^4$ ", proceedings of ReDeEM March 2015, Thiyagarajar college Madurai
- 12. Gopalan. M.A and Pandichelvi. V, july2009, "On the integer solutions of the Biquadratic Equation $(x^2 y^2)^2 = (z^2 1)^2 + w^4$ ", Paper presented in ICOMAC,24-25.
- 13. Gopalan.M.A and Shanmuganandham. P, 2012" On the biquadratic equation $x^4 + y^4 + (x+y)z^3 = 2(k^2+3)^{2n}w^4$ ", Bessel J.Math., 2(2), 87-91
- 14. Gopalan M.A, and Sivakami. B, 2013. "Integral solutions of quartic equation with four unknowns $x^3 + y^3 + z^3 = 3xyz + 2(x + y)w^3$ ", Antarctica J.Math., 10(2),151-159
- 15. Gopalan. M.A and Shanmuganandham. P, 2010 "On the biquadratic equation $x^4 + y^4 + z^4 = 2w^4$ ", *Impact J. Sci. Tech*, 4(4), 111-115

- 16. Gopalan. M.A and Padma. R, ,2010 "Integral solutions of non-homogeneous quartic equation $x^4 y^4 = z^2 w^2$ ", *Antarctica J.Math.*,7(4), 371-377
- 17. Gopalan.M.A., Vidhyalakshmi. S and Lakshmi.K,2012 "On the biquadratic equation with four unknowns $x^2 + xy + y^2 = (z^2 + zw + w^2)^2$ ", *IJPAMS*,5(1),73-77
- 18. Vidhyalakshmi. S., Gopalan. M.A., and Kavitha.A,2014 "On the integral points of the biquadratic equation with four unknowns $(x y)(x^2 + y^2) + (x^2 xy + y^2)z = 12zw^3$ ", SJPMS, 1(1), 19-21.