Scholars Bulletin

(A Multidisciplinary Bi-weekly Journal)

An Official Publication of "Scholars Middle East Publishers",

Dubai, United Arab Emirates

Website: http://scholarsbulletin.com/

ISSN 2412-9771 (Print) ISSN 2412-897X (Online)

Non-monotone wedge Trust Region Method for Unconstrained Optimization

Weili Zheng, Qinghua Zhou*

College of Mathematics and Information Science, Hebei University, Baoding, 071002, Hebei Province, China

*Corresponding Author:

Qinghua Zhou

Email: qinghua.zhou@gmail.com

Abstract: We consider non-monotone wedge trust region method for derivative-free optimization. Throughout our knowledge, this is the first investigation paper which combining non-monotone strategy into wedge trust region methods. The computational results proved the efficiency of the new composite strategy.

Keywords: wedge trust region, non-monotone technique, unconstrained optimization, derivative free optimization

INTRODUCTION

In this paper, we limit our discussion to the unconstrained optimization problem:

$$min f(x), x \in \mathbb{R}^n \tag{1}$$

where the objective function f(x) is continuous and its derivatives are not available. There are several effective techniques solving this kind of problems, such as patter search methods, simplex methods, interpolation model [1, 2], and so on.

We consider trust region methods which are famous for having global convergence quality and some other good properties [3, 4]. The traditional trust region methods obtain a trial step by solving the following quadric model m_{ν} ,

$$m_k(x_k + s) = f(x_k) + g_k^T s + \frac{1}{2} s^T G_k s, \qquad (2)$$

where the vector $g_k \in \mathbb{R}^n$ and the $n \times n$ symmetric matrix G_k must be determined so that the model interpolates f at a set of sample points, as the following

$$m(x_k) = f(x_k), m_k(y^l) = f(y^l), l = 1, 2, \dots, m,$$
 (3)

where $Y_k = \{y^1, y^2, \cdots, y^m\} \cup \{x_k\}$ is the interpolation points set.

In order to insure the uniqueness and existence of the quadratic model, the parameter m should be chosen as m = (n+1)(n+2)/2-1 and the interpolation points set should be poised [5, 6, 7, 8] for the well defined quadratic models. When the model m_k is determined by these conditions, the interpolation set Y_k is nonsingular.

Let's suppose that we start the current iteration with a nonsingular set of sample points Y_k . Before computing a new trial point using the model m_k , we can figure out $y^{l_{out}}$ which is the farthest satellite from current iterate x_k . It can insure virtue of the models. In fact, the wedge trust region method is for computing a trial step s_k by approximately solving

$$\min_{k} m_k (x_k + \mathbf{s}) \tag{4}$$

$$s.t. \|s\| \le \Delta_k \tag{5}$$

$$s \notin W_{\iota}$$
, (6)

where W_k is a set [9, 10, 11] which contains the "taboo region" area, and the purpose is to avoid the new point falling into it, and this trail step s_k is calculated by the method introduced in [8]. This idea is very promising.

Unfortunately, we could not find the optimal point rapidly. In the iteration, we must choose the relatively good point for the next iteration point.

Recently, non-monotone techniques are widely used in the trust region methods. Due to the high efficiency of non-monotone techniques, many authors are interested in working on the non-monotone techniques for solving optimization problems [12, 13]. the traditional non-monotone trust region method adoptions the ratio

$$\frac{r}{r_k} = \frac{f_l(x_k) - f(x_k + s_k)}{m(0) - m_k(s_k)}$$
(7)

to measure the degree of this model and adjust the trust region radius. Actually, it may not be a true reflection of the current model fitting the objective function. This paper improved the algorithm of Deng [14] and applied it to the wedge trust region algorithm. We may use the ratio (7) to update the trust region radius

$$\hat{r}_k = \frac{D_k - f(x_k + \mathbf{s}_k)}{m(0) - \mathbf{m}_k(\mathbf{s}_k)}$$

as a accepted rule of the tentative point.

The rest of this paper is organized as follow. In section 2, a new non-monotone wedge trust region algorithm will be established, and the algorithm analysis is explained. Numerical results are proved in section 3 which is showed that the new method is quite effective for unconstrained optimization problems. Finally, we give some conclusions in section 4.

A non-monotone wedge trust region algorithm

Step 0 Set the trial parameters, an initial trust region radius $\Delta_k > 0$, and an initial guess x_0 . The interpolation set $Y_K = x_k \cup Y$, $Y = \{y^1, y^2, \dots, y^m\}$ (we assume that $f(x_k) \le f(y) \forall y \in Y$).

Step 1 According to the current iteration point x_k , compute

$$y^{l_{out}} = \arg\max_{y \in Y} \|y - x_k\|.$$

Step 2 Construction quadratic model m_k and define the wedge W_k .

Step 3 Solve the sub-problem (2) and compute the trial step S_k , and calculate

$$r_k = \frac{Ared(d_k)}{\Pr{ed(d_k)}} = \frac{f(x_k) - f(x_k + s_k)}{m(0) - m_k(s_k)}, \hat{r}_k = \frac{D_k - f(x_k + s_k)}{m(0) - m_k(s_k)}.$$

Step 4 Update the trust region radius Δ_k with the following Algorithm analysis.

Step 5 Update the interpolation set and the iteration point, if it is a successful iteration, that is $r_k > \alpha_1$, then $x_{k+1} = x_k + s$ $, Y = \{x_k\} \cup y / \{y^{l_{out}}\}.$

Else it is a unsuccessful iteration, that is $\hat{r}_k < \alpha_1$, then $x_{k+1} = x_k$,

a unsuccessful iteration, that is
$$r_k < \alpha_1$$
, then $x_{k+1} = x_k$,
$$Y = \begin{cases} \left\{ x_k + s \right\} \cup y / \left\{ y^{l_{out}} \right\}, if \left\| y^{l_{out}} - x_k \right\| \ge \left\| (x_k + s) - x_k \right\| \\ Y, \text{otherwise} \end{cases}.$$

Step 6 k = k + 1, go to step 1.

Algorithm analysis: In the traditional trust region algorithm, when the function value increases, the trust region radius must be reduced. But this situation is different with the case of non-monotone method when the function value could be allowed to increase. Therefore we can adopt some different parameters involved in updating the radius. Actually, The formulas for updating the trust region radius are the following:

$$\Delta_{k+1} = \begin{cases} \beta_4 \left\| s_k \right\|,_k r_1 < \alpha_1 \underline{\mathbb{H}} \widehat{\mathsf{r}}_k > \alpha_1; \\ \beta_1 \left\| s_k \right\|, r_1 < \alpha_1 \underline{\mathbb{H}} \widehat{\mathsf{r}}_k \leq \alpha_1; \\ \Delta_k, \alpha_1 \leq r_k < \alpha_2; \\ \beta_2 \Delta_k, \alpha_2 \leq r_k \leq \alpha_3; \\ \beta_3 \Delta_k, \mathsf{r}_k > \alpha_3. \end{cases}$$

This method still reduces the trust region radius when the function value decreases. In the numerical experiment, the parameters are constructed as follows, $\alpha_1=0.01$, $\alpha_2=0.95$, $\alpha_3=1.05$, $\beta_1=0.5$, $\beta_2=2$, $\beta_3=1.01$, $\beta_4=0.8$. In addition, the algorithm is different from the original one in [12]. We choose

$$D_{k} = \begin{cases} f(x_{k}) & k = 1 \\ h_{k}D_{k-1} + (1 - h_{k})f(x_{k}) & k^{3} 2 \end{cases}$$
 (8)

to replace the $f_{l(\mathbf{k})}$, and the parameter

$$\eta_k = \frac{f(x_k)}{f(x_k) - D_{k-1}}.$$

NUMERICAL RESULTS

Actually, this experiment is based on both quadratic model's traditional wedge trust region and non-monotone accepting criterion. The idea of solving the sub-problem is described carefully in Moré and Sorensen [8]. And the basic original program for wedge trust region algorithm is in [14]. We write the new algorithm by MATLAB. In this work, the traditional wedge trust region algorithm alg2 [9] based on quadratic model and the new algorithm are compared mainly according to number of function evaluations. Specially, we select 28 trial problems, which come from the CUTE [16]. Because the sub-program needs larger function calculation and the convergence are relatively slow, we only solve the right amount of dimension test questions. In the following table, the name of 28 test questions and results are given. We define n is the dimension of the objective function, and nf is the calculative times of an experimental function value.

Finally, f is the optimal point and the wed act represents the number of wedge constraints.

Table-1: Comparison non-monotone wedge trust region algorithm with wedge trust region based on quadratic model

n	p	nf	f	wed act
		new alg2	new alg2	new alg2
15	ARWHHEAD	482 479	8.44E-15 1.29E-14	25 29
10	BDQRTIC	376 440	1.83E+01 1.83E+01	25 28
6	BIGGS6	305 345	2.07E-06 3.74E-06	23 16
10	BROWNAL	471 512	3.65E-29 1.82E-29	38 43
2	BROWNBS	50 58	9.86E+11 9.82E+11	8 12
10	BRYBND	245 251	2.22E-28 5.25E-29	28 27
10	CRAGGLVY	690 700	1.89E+00 1.89E+00	26 35
2	CUBT	132 134	4.44E-31 4.93E-32	18 26
2	DENSCHNA	45 45	5.88E-37 4.72E-33	15 13
15	DIXMAANC	668 691	1.00E+00 1.00E+00	33 26
15	DIXMAANK	1070 1087	1.00E+00 1.00E+00	35 27
15	DIXON3DQ	94 99	1.68E-27 1.26E-27	8 8
6	ENGVAL1	37 43	0.00E+00 0.00E+00	13 14
2	ENGVAL2	102 105	2.03E-28 7.10E-29	24 21
5	GENHUMPS	194 270	3.11E-44 4.87E-42	24 28
3	GROWTHLS	91 74	1.22E+01 1.25E+01	6 7
2	HAIRY	58 89	2.00E+01 2.00E+01	58 89
6	HEART6LS	2350 3261	3.51E-01 3.06E-01	67 72
2	HUMPS	124 200	0.00E+00 1.30E-58	66 19
3	HATFLDE	53 118	4.58E-07 4.52E-07	14 16
3	HATFLDD	130 98	6.62E-08 3.28E-07	35 14
4	KOWOSB	130 158	3.08E-04 3.08E-04	28 31
5	OSBORNEA	162 197	1.51E-04 7.60E-05	10 17
11	OSBORNEB	1183 1261	4.01E-02 4.01E-02	41 36
3	PFIT1LS	260 260	2.01E+02 1.99E+02	14 18
2	SISSER	241 294	4.61E-57 5.54E-67	31 22
4	WOODS	351 407	4.94E-30 3.72E-30	26 23
10	VARDIM	5516 6494	6.35E+02 6.35E+02	30 29

According to the experiment, we can see that there are 24 problems of new algorithm performing better than the typical wedge trust region methods considering the number of function value's calculation, and the new algorithm reduced the time of computing the function value. At the same time, we get 7 problems which improved the precision of the optimal solution considerably. In the midst of all the questions there are 9 functions whose optimal solution is uniform, all of them being solved use less time of calculations than the traditional wedge trust region methods. The experimental results show that our new algorithm is effective.

CONCLUSIONS

In this paper, we propose a non-monotone wedge trust region method for unconstrained optimization without derivatives. The sub-problem incorporates more information which is useful to the algorithm. However, in the process of numerical experiments, we don't have comprehensively considering the influence of parameters on the efficiency of algorithm. In the near future, we would like to research the performance of the algorithm under different parameter condition.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61473111) and the Natural Science Foundation of Hebei Province (Grant No. A2014201003, A2014201100).

REFERENCES

- 1. Conn, A. R., Scheinberg, K., & Toint, P. L. (1997). Recent progress in unconstrained nonlinear optimization without derivatives. Mathematical programming, 79(1-3), 397-414.
- 2. Powell, M. J. D. (1998). Direct search algorithms for optimization calculations. Acta Numerica, 7, 287-336.
- 3. Yuan, Y. X. (2015). Recent advances in trust region algorithms. Mathematical Programming, 151(1), 249-281.
- 4. Niu, L., & Yuan, Y. (2010). A New Trust-Region Algorithm For Nonlinear Constrained Optimization. Journal of Computational Mathematics, 28(1).
- 5. Conn, A. R., Scheinberg, K., & Vicente, L. N. (2008). Geometry of interpolation sets in derivative free optimization. Mathematical programming, 111(1-2), 141-172.
- 6. Fasano, G., Morales, J. L., & Nocedal, J. (2009). On the geometry phase in model-based algorithms for derivative-free optimization. Optimization Methods & Software, 24(1), 145-154.
- 7. Conn, A. R., Scheinberg, K., & Vicente, L. N. (2009). Global convergence of general derivative-free trust-region algorithms to first-and second-order critical points. SIAM Journal on Optimization, 20(1), 387-415.
- 8. Moré, J. J., & Sorensen, D. C. (1983). Computing a trust region step. SIAM Journal on Scientific and Statistical Computing, 4(3), 553-572.
- 9. Marazzi, M., & Nocedal, J. (2002). Wedge trust region methods for derivative free optimization. Mathematical programming, 91(2), 289-305.
- 10. Powell, M. J. D. (2007). New developments of NEWUOA for minimization without derivatives. Tech. Rep.
- 11. Morales, J. L. (2007). A trust region based algorithm for unconstrained derivative-free optimization. tech. rep., Departamento de Matemáticas, ITAM.
- 12. Sun, W. (2004). Nonmonotone trust region method for solving optimization problems. Applied Mathematics and Computation, 156(1), 159-174.
- 13. Gu, N. Z., & Mo, J. T. (2008). Incorporating nonmonotone strategies into the trust region method for unconstrained optimization. Computers & Mathematics with Applications, 55(9), 2158-2172.
- 14. Zh. Li, F., & Deng, N.Y. (1999). A new class of nonmonotone trust region methods and its convergence, Acta Mathematicae Applicatae Sinica, (3), 457-465. (in Chinese)
- 15. Marazzi, M. (2011). Software for derivative-free unconstrained nonlinear optimization. Information on http://www.eecs.northwestern.edu/~nocedal/wedge.html,2011.
- 16. Bongartz, A.R. Conn, N.I.M. Gould, & Ph. L. Tiont. (1995). CUTE: Constrained and unconstrained testing environment. ACM Transactions on Mathematical Software, 21(1), 123-160.